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 ABSTRACT  

In transporta�on planning, one of the first steps is to es�mate the travel demand. The 

final product of the es�ma�on process is an origin-des�na�on (OD) matrix, whose 

entries correspond to the number of trips between pairs of origin-des�na�on zones in 

a study region. In this paper, we review the main sta�s�cal models proposed in the 

literature for the es�ma�on of the OD matrix based on traffic counts. Unlike 

reconstruc�on models, sta�s�cal models do not aim at es�ma�ng the exact OD matrix 

corresponding to observed traffic volumes, but they rather aim at es�ma�ng the 

parameters of a sta�s�cal model of the popula�on of OD matrices. Ini�ally we define 

the es�ma�on problem, emphasizing its underspecified nature, which has lead to the 

development of several models based on different approaches. We describe sta�c 

models whose parameters are es�mated by means of maximum likelihood, the 

method of moments, and Bayesian inference. We also describe  some recent dynamic 

models. Following that, we discuss research ques�ons related to the 

underspecifica�on problem, model assump�ons and the es�ma�on of the route 

choice matrix, and indicate promising research direc�ons. 

 

RESUMO 

No planejamento dos transportes, um dos primeiros passos é es�mar a demanda por 

viagens. O produto final do processo de es�mação é uma matriz origem-des�no (OD), 

cujas entradas correspondem ao número de viagens entre pares de zonas de origem-

des�no em uma região de estudo. Neste ar�go, revisamos os principais modelos esta-

As�cos propostos na literatura para a es�mação da matriz OD com base em contagens 

de tráfego. Ao contrário dos modelos de reconstrução, os modelos estaAs�cos não vi-

sam a es�mar a matriz OD exata correspondente aos volumes de tráfego observados, 

mas sim a es�mar os parâmetros de um modelo estaAs�co da população de matrizes 

OD. Inicialmente, define-se o problema da es�mação, enfa�zando sua natureza subes-

pecificada, o que levou ao desenvolvimento de vários modelos baseados em diferentes 

abordagens. Descrevem-se modelos está�cos cujos parâmetros são es�mados por 

meio da máxima verossimilhança, do método dos momentos e da inferência bayesi-

ana. Descrevem-se também alguns modelos dinâmicos recentes. Em seguida, discu-

tem-se questões de pesquisa relacionadas ao problema da subespecificação, às pre-

missas adotadas nos modelos e à es�ma�va da matriz de escolha de rotas, e indicam-

se direções de pesquisa promissoras. 
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1. INTRODUCTION 

In	 transportation	planning,	 one	of	 the	 �irst	 steps	 is	 to	 estimate	 travel	 demand.	Generally,	 demand	 is	

measured	 in	 terms	 of	 trip	 �lows	 between	 zones	 in	 a	 geographic	 region.	 The	 �inal	 product	 of	 the	

estimation	 process	 is	 a	 so-called	 origin-destination	 matrix	 (OD	 matrix,	 for	 short),	 whose	 entries	

correspond	to	the	number	of	trips	between	pairs	of	zones	in	a	reference	time	period.	

	 Traditionally,	OD	matrices	have	been	estimated	through	direct	methods,	such	as	home-based	surveys,	
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road-side	interviews	and	license	plate	automatic	recognition.	These	methods	collect	sample	data	on	the	

number	of	trips	performed	daily,	their	origins	and	their	destinations.	Such	data	can	be	compiled	and	

several	 statistics	may	 be	 computed,	 such	 as	 the	mean,	 standard	 deviation	 and	 con�idence	 intervals.	

However,	these	direct	methods	require	large	samples	to	achieve	a	target	statistical	signi�icance,	which	

may	be	technically	or	economically	infeasible	(Cascetta,	2009).	

	 Another	way	of	estimating	OD	matrices	is	by	using	trip	generation	and	distribution	models.	In	this	

approach,	social	and	economic	data	are	used	to	estimate	the	number	of	trips	produced	and	attracted	by	

each	zone.	A	gravity-type	model	 is	 applied	 in	order	 to	distribute	 the	generated	 trips	between	zones	

(Ortúzar	and	Willumsen,	2011).	These	models	 are	 in	 general	 applied	 in	 long	 term	planning	studies,	

which	 require	 the	prediction	of	OD	matrices	 for	nonexistent	 or	developing	 geographic	 regions.	This	

approach	involves	the	acquisition	of	large	amounts	of	data	through	surveys,	with	high	accompanying	

costs,	which	precludes	its	use	in	short	term	applications,	such	as	traf�ic	management	systems	and	public	

transit	operation.	

	 In	the	1970s,	researchers	started	developing	alternative	mathematical	models	whose	objective	was	

to	obtain	an	OD	matrix	from	indirect	data	on	trip	patterns	(Robillard,	1975).	The	main	sources	of	indirect	

data	were	traf�ic	volumes	observed	on	links	of	the	transportation	network	(also	called	traf�ic	counts).	

The	development	of	 traf�ic	monitoring	systems	opened	up	the	possibility	of	acquiring	data	on	traf�ic	

volumes	in	an	automated	way	at	low	costs.	In	road	networks	this	acquisition	takes	place	by	means	of	

sensors	installed	on	the	roads,	and	in	transit	networks	data	on	traf�ic	of	passengers	can	be	acquired	by	

means	of	electronic	ticketing.	

	 The	 rationale	of	 these	 alternative	models	 is	 to	 estimate	OD	 �lows	 through	a	mathematical	model	

which	relates	traf�ic	volumes	on	links	of	the	transportation	network	to	OD	�lows	between	zones.	The	OD	

matrix	so	obtained	is	called	a	synthetic	OD	matrix,	since	it	is	not	estimated	by	direct	observation	of	trips	

(e.g.,	by	directly	 sampling	OD	 trips),	but	as	an	output	of	 a	model	which	uses	 indirect	data	on	 travel	

demand.	The	usefulness	of	such	a	model	is	evident:	the	transportation	demand	patterns	in	a	part	or	in	a	

whole	region	may	be,	in	theory,	traced	to	a	�iner	time	scale	of	days	or	hours,	or	even	in	real	time.	This	is	

a	great	improvement	over	household	surveys,	which	are	typically	carried	out	once	in	a	decade,	a	time	

period	during	which	the	demand	pattern	may	have	changed	considerably.	

	 In	the	literature,	a	distinction	is	made	between	reconstruction	and	estimation,	as	pointed	out	by	Spiess	

(1987),	 Lo	 et	 al.	 (1996),	 Hazelton	 (2001),	 Timms	 (2001)	 and	 Carvalho	 (2014).	 We	 de�ine	 as	

reconstruction	 of	 the	 OD	matrix	 the	 attempt	 to	 recover	 the	 "exact"	 OD	matrix	 which	 produced	 an	

observed	vector	of	link	volumes	in	a	given	time	period.	On	the	other	hand,	we	refer	to	estimation	of	the	

OD	 matrix	 when	 we	 intend	 to	 estimate	 the	 parameters	 of	 a	 statistical	 model	 which	 describes	 a	

"population"	of	OD	matrices.	Statistical	models	assume	that	OD	matrices	are	random	variables,	with	a	

particular	realization	in	a	given	time	period,	from	which	we	can	compute	mean	OD	�lows,		variances	and	

higher	moments	which	may	be	valuable.	

	 Oliveira	Neto	et	al.	(2016)	review	the	main	reconstruction	models	proposed	in	the	literature.	They	

treated	the	phenomenon	that	generates	the	OD	�lows	as	either	probabilistic	or	deterministic.	In	the	case	

of	 probabilistic	 OD	 �lows,	 they	 assume	 that	 the	 phenomenon	 is	 stationary,	 that	 is,	 with	 constant	

parameters	over	time.	They	review	the	main	approaches	based	on	generalized	least	squares,	maximum	

entropy	and	Bayesian	inference,	and	discuss	the	main	characteristics	and	drawbacks	of	such	methods.	

The	authors	also	propose	research	questions	related	to	the	underspeci�ication	problem,	quality	of	prior	

information,	 validity	 of	 probability	 models,	 application	 to	 real	 networks,	 equilibrium	 in	 congested	

networks,	and	the	impact	of	route	choice	modeling.	

	 Aiming	to	expand	the	review	of	Oliveira	Neto	et	al.	(2016),	this	paper	focus	on	statistical	models	for	

estimation	of	the	OD	matrix.	Unlike	reconstruction	models,	statistical	models	treat	OD	�lows	as	random	

variables,	and	the	main	interest	 lies	on	the	estimation	of	parameters	of	 the	model,	such	as	mean	OD	

�lows,	rather	than	reconstruting	a	realized	OD	matrix.	Considering	the	availability	of	traf�ic	data	from	

real-time	monitoring	systems,	it	is	believed	that	a	large	spatio-temporal	dataset	of	traf�ic	volumes	might	
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be	suitable	for	estimating	mean	OD	�lows	in	large	networks.	The	main	objectives	of	this	paper	are	to	

describe	 the	main	 features	 and	 limitations	 of	 the	models;	 to	 discuss	 issues	 and	 research	 questions	

related	to	the	problem	and	to	the	models;	and	to	suggest	future	research	directions.	

	 The	remainder	of	this	paper	is	divided	up	into	the	following	sections:	in	section	2	we	describe	the	

problem	of	estimation	of	 the	OD	matrix	based	on	 traf�ic	 counts;	 in	 sections	3	we	describe	 the	main	

statistical	models;	 in	section	4	we	discuss	issues	and	research	questions;	�inally,	we	draw	concluding	

remarks	and	point	to	future	research	in	section	5.	

2. THE OD MATRIX ESTIMATION PROBLEM  

Let	 ( , )N A 	be	a	transportation	network,	in	which	N 	is	a	set	of	nodes	and	A 	is	a	set	of	directed	links.	

Typically	for	road	networks	the	links	and	nodes	correspond	to	road	segments	and	intersections	between	

road	segments	respectively.	The	transportation	network	connects	zones	of	a	certain	geographic	region	

(e.g.,	a	city),	which	"produce	and	attract"	trips,	so	that	there	is	also	a	set	of	zones,	denoted	by	 I .	A	trip	

is	 a	movement	of	 a	user	 (person,	 freight,	 or	 vehicle)	between	an	origin	 zone	 and	 a	destination	 zone	

(referred	to	simply	as	an	OD	pair).	All	trips	enter	and	exit	the	network	through	centroid	nodes,	which	are	

terminal	nodes	located	at	zone	centroids.	Intrazonal	trips	are	not	taken	into	account,	since	their	origin	

and	destination	centroid	nodes	coincide.	

	 We	denote	by	 ix 	the	total	�low	of	trips	in	an	OD	pair	 i ∈I 	for	a	given	time	period.	In	applications,	a	
time	period	may	be,	e.g.,	the	morning	peak	hour	or	a	whole	business	day.	 ix 	is	regarded	as	a	random	

variable	with	a	known	density	function	probability	mass	function	(if	OD	�lows	are	treated	as	discrete	

variables).	What	is	traditionally	meant	as	an	OD	matrix	is	a	two-dimensional	array	whose	row	indices	

identify	origin	zones,	column	indices	identify	destination	zones,	and	the	entries	are	the	number	of	trips	

in	an	OD	pair.	As	a	matter	of	analytical	convenience,	in	our	notation	the	OD	matrix	is	stretched	out	as	a	

vector	
n

+∈x R 	(respectively	
n

+Z 	in	the	discrete	case)	for	which	 =| |n I 	is	the	number	of	OD	pairs.	

	 For	a	given	OD	pair	 i ,	there	is	a	set	of	routes	connecting	its	origin	and	destination	zones.	A	route	is	a	

simple	path	between	a	pair	of	nodes.	Let	 iK 	be	a	set	of	routes	associated	with	OD	pair	 i .	For	a	route	

∈ ik K ,	we	de�ine	 iky 	as	the	�low	of	trips	through	route	k 	in	a	reference	time	period.	Let	also	 +∈ r
y R 	be	

the	vector	whose	components	are	 iky ,	and	 = | |
∈∑ ii

r
I
K 	is	the	number	of	routes	over	all	OD	pairs.	In	

general,	 only	 a	 reduced	 set	 of	 routes	 is	 considered	 in	 a	model,	 since	 the	 full	 set	 of	 routes	may	 be	

prohibitively	large	in	real	scale	networks.	(See	Bekhor	et.	al.,	2006,	for	an	evaluation	of	route	choice	set	

generation	algorithms).	We	notice	that iky are	also	random	variables,	whose	relatioship	with
i
x is	given	

by	the	following	equation:	

	 = ,∀ ∈ ∀ ∈ik ik i iy p x k iK I 	 (1)	

where ikp for	 ∈ ik K 	and	 ∈i I gives	the	expected	proportion	(i.e.,	the	probability)	of	users	in	OD	pair	 i 	

that	chooses	to	follow	route	 k .	Notice	that	equation	(1)	implies	that	 =
∈
∑ ik i

k
i

y x
K

	for	all	 ∈i I .	

	 The	total	count	of	trips	which	�low	through	a	link	 ∈a A 	for	a	given	time	period	is	denoted	as	the	

traf�ic	volume	 az .	Traf�ic	volumes	on	all	links	are	represented	by	a	vector	 +∈ m
z R ,	and	 =| |m A 	is	the	

number	of	links	in	the	network.	Flows	on	routes	and	traf�ic	volumes	are	related	by	the	following	�low	

conservation	equation:	

																																																																	 = δ
∈ ∈

∀ ∈∑∑a ak ik

i k
i

z y a
I K

A 	 																																															(2)	

	 	 In	equation	(2),	δak 	takes	the	value	1	if	link	 a 	is	part	of	route	 k 	and	0	otherwise.	It	synthesizes	

information	 on	 the	 topology	 of	 the	 network.	 Conveniently	 we	 will	 refer	 to	 equation	 (2)	 in	 matrix	
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notation,	 in	which	 = [ ]δ ×ak m rΔ 	 is	 called	 the	 link-path	 incidence	matrix.	 Notice	 that	 it	 is	 possible	 to	

establish	 a	 direct	 relationship	 between	 OD	 �lows	 and	 traf�ic	 volumes	 through	 the	 route	 choice	

probabilities.	Let	 = [ ] ×ik r npP 	be	a	route	choice	matrix,	from	equations	(1)	and	(2),	in	matrix	notation:	

	 =z ΔPx 	 (3)	

	 The	route	choice	matrix	P 	is	commonly	speci�ied	by	means	of	a	route	choice	model,	which	estimates	

the	probability	that	a	user	chooses	a	route	as	a	function	of	the	travel	time	(or	generalized	cost)	associated	

with	the	route.	Deterministic	route	choice	models	assume	that	the	users	have	perfect	knowledge	of	costs	

and	always	choose	the	route	with	minimum	cost.	In	contrast,	stochastic	models	assume	that	perceived	

costs	of	 the	users	are	different	 from	actual	costs,	 so	 that	 they	may	choose	routes	which	do	not	have	

minimum	costs.	The	probabilities	are	estimated	by	means	of	discrete	choice	models	(Ben-Akiva;	Lerman,	

1985).	

	 The	term	 =F ΔP 	is	called	the	assignment	matrix,	through	which	the	relationship	between	x 	and	 z 	

may	be	directly	expressed	by:	

	 =z Fx 	 (4)	

	 After	 presenting	 the	 basic	 mathematical	 relationships	 among	 variables,	 we	 can	 �inally	 state	 the	

estimation	problem.	Let ( ; )f x θ 	be	a	probability	distribution	for	the	random	OD	matrices	 x ,	where	θ
is	a	vector	of	parameters,	and ( ; )g z θ 	the	probability	distribution	of	traf�ic	volumes	 z .	Given	a	sample	

of	observed	traf�ic	volumes	
(1)z ,	

(2)z ,	 ...,	
( )Nz 	taken	on	different	days	during	the	same	reference	time	

period	(for	example,	 the	peak	hour	for	diferent	days)	the	problem	is	how	to	estimate	parameters	θ 	

(Hazelton,	 2000).	 In	 the	 following	 section,	 we	 describe	 the	 main	models	 proposed	 for	 solving	 this	

estimation	problem	according	to	different	estimation	principles	from	classic	and	Bayesian	statistics.	

3. STATISTICAL MODELS FOR OD MATRIX ESTIMATION  

In	 the	 following	 subsections,	 we	 present	 statistical	 models	 whose	 parameters	 are	 estimated	 by	

maximum	likelihood	(section	3.1),	the	method	of	moments	(section	3.2)	and	Bayesian	inference	(section	

3.3).	The	models	in	these	sections	assume	that	the	distribution	probability	of	the	OD	matrices	does	not	

vary	in	time,	and	are	thus	termed	static	models.	In	section	3.4	we	describe	dynamic	models,	which	allow	

the	probability	distribution	of	OD	matrices	to	vary	over	time.	

3.1 Models based on maximum likelihood 

Estimation	by	maximum	likelihood	is	performed	through	maximization	of	the	likelihood	function.	Some	

authors	 (Spiess,	 1987;	 Vardi,	 1996;	Tebaldi	 and	West,	 1998;	Hazelton,	 2000)	 assume	 that	OD	 �lows	

follow	independent	Poisson	distributions	with	parameters	 =E[ ]
i i

xθ .	We	denote	by	
T

1 2( , , ..., )nθ θ θ=θ  	

with	
n∈Rθ 	the	vector	of	mean	OD	�lows	for	all	OD	pairs.	It	can	be	shown	(Hazelton,	2000)	that	route	

�lows	 , ,
ik i
y k i∀ ∈ ∈K I 	are	also	independent	random	variables	which	follow	Poisson	distributions	with	

expected	value	E[ ]=
ik ik i
y p θ ,	in	which	

ik
p 	is	the	probability	that	a	trip	occurs	in	route	

i
k∈K .	

	 Moreover,	 as	 traf�ic	 volumes	on	 links	 are	 sums	of	 route	 �lows	according	 to	 the	 �low	 conservation	

equation	(2),	they	also	marginally	follow	Poisson	distributions.	Nevertheless,	since	some	links	share	the	

same	route	�lows,	link	volumes	are	not	independent	random	variables,	so	that	their	covariances	will	be	

different	from	zero.	Their	joint	distribution	 ( | )g z θ 	should	be	some	complicated	form	of	multivariate	

Poisson.	Vardi	(1996)	and	Hazelton	(2000)	proposed	to	approximate	this	distribution	by	a	multivariate	

normal	distribution:	

	 /2 1/2 T 11
( | )=(2 ) | ( )| exp ( ) ( ) ( )

2

mg π − − − − − − 
 

z Σ z F Σ z Fθ θ θ θ θ 	 (5)	

	where	 E[ ]= ( )=z Fµ θ θ 	 and	 covariance	 matrix	 T( ) = diag( )Σ Δ P Δθ θ ,	 in	 which	 diag(.)denotes	 a	



Neto, A. R. P.; Neto, F. M. O.; Loureiro, C. F. G. Volume 25 | Número 4 | 2017  

TRANSPORTES | ISSN: 2237-1346 5 

diagonal	matrix	and	|.|	denotes	the	determinant	of	a	matrix.	

	 A	noteworthy	fact	about	the	multivariate	normal	in	(5)	is	that	both	expected	value	µ 	and	covariance	

matrix	Σ 	are	functions	of	the	parameters	θ .	This	is	reminiscent	of	the	Poisson	univariate	distribution,	

whose	mean	and	variance	are	equal.	It	should	also	be	noted	in	the	density	function	de�ined	by	(5)	that	

the	matrix	Δ 	should	be	formed	only	by	independent	rows,	otherwise	the	covariance	matrix	 ( )Σ θ 	will	

be	singular.	This	means	that	only	the	rows	corresponding	to	non-redundant	observed	links	should	be	

included	in	Δ .	

	 Another	 important	 issue	 related	 to	 (5)	 is	 how	 to	 set	 the	 route	 choice	matrix	 P .	 In	 uncongested	

networks,	it	could	be	estimated	separately	by	means	of	a	route	choice	model,	since	an	assumption	in	

uncongested	 networks	 is	 that	 route	 choices	 are	 independent	 of	 the	 OD	 �lows.	 In	 case	 of	 congested	

networks,	the	matrix	P 	is	dependent	on	the	OD	�lows	and	a	more	appropriate	approach	would	be	to	

treat	it	as	a	parameter	of	the	model,	so	that	it	could	be	jointly	estimated	with	mean	OD	�lows.	

	 Given	a	sample	of	size	N 	of	traf�ic	volumes	vectors	
(1) (2) ( ), , , Nz z z… ,	each	observed	in	different	days	

during	the	same	reference	time	period	and	assumed	independent,	we	de�ine	the	likelihood	function	as	

the	following:	

	
( )

=1

( )= ( | )
N

j

j

f∏ zL θ θ 	 (6)	

	 We	can	de�ine	as	a	maximum	likelihood	estimate	of	the	mean	OD	matrix	a	maximizer	of	equation	(6).	

It	 is	 though	 computationally	 more	 convenient	 to	 maximize	 the	 log-likelihood	 function,	 given	 by	

( )= log ( )ℓ Lθ θ ,	which	in	our	present	case	takes	the	following	form:	

	
( ) T 1 ( )

=1

1
( )= log| ( )| ( ) ( ) ( )

2 2

N
j j

j

N
c−− − − − +∑Σ z F Σ z Fℓ θ θ θ θ θ 	 (7)	

	 In	which	 = ( /2)log(2 )c Nm π− 	is	constant	with	respect	to	θ .	The	maximum	likelihood	estimator	is	

ˆ = ( )argmax ≥0ℓθθ θ ,	which	may	be	obtained	by	means	of	non-linear	programming	methods.	A	particular	

dif�iculty	 in	maximizing	equation	 (7)	 is	 that	 it	may	not	be	 strictly	 concave,	 i.e.,	 it	may	have	multiple	

maximizers.	This	will	require	some	form	of	regularizaton,	for	example	the	selection	of	θ̂ 	which	is	closest	

to	a	prior	OD	matrix	or	the	use	of	a	Bayesian	approach	as	described	in	section	3.3.	

	 In	case	the	sample	of	observed	volume	vectors	is	large,	Hazelton	(2000)	proposes	to	substitute	the	

population	covariance	matrix	by	the	sample	covariance	matrix	S 	in	the	log-likelihood,	resulting	in	the	

following	approximation	to	the	log-likelihood	that	is	computationally	more	tractable:	

	
( ) T 1 ( )

=1

1
( ) = ( ) ( )

2

N
j j

j

−− − −∑ z F S z Fɶℓ θ θ θ 	 (8)	

	 Maximizing	equation	(8)	for	 ≥ 0θ 	can	be	interpreted	as	�inding	an	estimate	for	which	the	sum	of	the	

weighted	quadratic	distance	(
1−

S 	is	the	matrix	of	weights)	between	the	expected	volume	vector	 =Fµ θ 	

and	the	observed	volume	vectors	
( ) , =1,2,j j Nz … 	is	minimal.	However,	 ( )ɶℓ θ 	is	not	stricly	concave	if	Δ 	

has	more	columns	than	rows,	which	occurs	if	there	are	more	OD	pairs	than	observed	links,	and	we	may	

also	have	to	resort	to	a	prior	OD	matrix.	

3.2  Models based on the method of moments 

The	 method	 of	 moments	 is	 a	 classical	 technique	 in	 point	 estimation.	 Its	 basic	 idea	 is	 to	 solve	 the	

equations	obtained	by	equating	population	and	sample	moments.	Let	
(1) (2) ( ), , , Nz z z… 	be	a	sample	of	

traf�ic	 volumes	 vectors,	 each	 observed	 in	 different	 days	 during	 the	 same	 reference	 time	period	 and	

assumed	independent.	Their	sample	mean	 z 	and	sample	covariance	matrix	S 	are	given	respectively	by:	
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( )

=1

1
=

N
j

jN
∑z z 	 (9)	

	
( ) ( ) T

=1

1
= ( )( )

1

N
j j

jN
− −

− ∑S z z z z 	 (10)	

	

	 In	 theory,	 an	 estimate	of	 the	mean	OD	 �lows	 θ 	may	be	obtained	by	 solving	 the	 linear	 system	of	

equations	resulting	from	equating	population	and	sample	moments	with	the	additional	constrain	the	

≥ 0θ ,	as	given	below:	

	
Tdiag( )

=
=

ΔP z

Δ P Δ S

θ
θ

	 (11)	

	 The	linear	system	given	by	(11)	will	have	multiple	solutions	if	its	number	of	independent	equations	

is	less	than	the	number	of	OD	pairs.	Moreover,	it	may	even	be	inconsistent,	i.e.,	it	may	have	no	 ≥0θ 	

which	satisfy	all	equations.	The	inconsistencies	may	arise	from	sampling	error.	To	overcome	this	prob-

lem,	Hazelton	(2003)	proposed	to	set	an	optimization	model	whose	objective-function	is	the	minimiza-

tion	of	the	distances	between	theoretical	and	sample	moments:	

	
Tˆ = { vec( diag( ) ) vec ) }argmin ρ≥ − + −

0
ΔP z Δ P Δ (Sθθ θ θ� � � � 	 (12)	

	 In	 which	 vec(.) 	 is	 the	 vector	 concatenation	 of	 the	 columns	 of	 a	 matrix,	 .� � 	 denotes	 a	 suitable	

distance	measure	 (a	 common	one	 is	 the	Euclidian	distance),	 0ρ ≥ 	 is	 a	weighting	 factor.	 It	 is	worth	

noting	that	the	method	of	moments	is	not	dependent	on	the	Poisson	assumption,	and	may	be	applied	to	

more	general	models	in	which	only	a	relationship	between	the	mean	vector	and	the	covariances	matrix	

is	assumed.	

3.3 Bayesian models 

Models	based	on	Bayesian	inference	de�ine,	in	addition	to	the	likelihood	of	the	data,	prior	and	posterior	

probability	distributions	for	the	OD	matrix.	The	main	model	in	this	class	was	proposed	by	Tebaldi	and	

West	(1998).	Following	Vardi	(1996),	they	assume	that	OD	�lows	x 	are	discrete	and	follow	independent	

Poisson	 distributions,	 whose	 mean	 value	
i

θ 	 for	 OD	 pair	 i 	 follows	 a	 gamma	 prior	 probability	

distribution.	They	also	assume	that	only	one	route	is	available	for	each	OD	pair,	so	that	the	route	choice	

matrix	P 	equals	the	identity	matrix.	

	 In	their	contribution,	the	authors	assume	one	has	a	vector	 z of	observed	traf�ic	volumes	in	a	single	
point	 in	 time.	 In	 Bayesian	 inference	 the	 unknown	 vector	 of	 parameters	 θ 	 is	 treated	 as	 a	 random	

variable,	for	which	we	de�ine	a	prior	distribution	p( )θ 	before	link	volume	data	 z 	are	observed,	and	a	

posterior	distribution	 p( | )z θ 	updated	via	Bayes	theorem	after	link	volumes	data	are	observed:	(See	

Gelman	et	al.,	2014	for	a	comprehensive	reference	on	Bayesian	inference)	

	
p( | )p( )

p( | )
p( )

= z
z

z

θ θθ 	 (13)	

	

with	the	following	likelihood	function,	obtained	by	marginalizing	x 	in	the	joint	probability	distribution	
of	x 	and	z :	

	 p( | )= p( , | )
∈
∑
x

z x z
X

θ θ 	 (14)	

in	which	 ={ : = }x Δx zX 	is	the	set	of	OD	�low	vectors	consistent	with	the	observed	link	volume	vector	

z .	(this	implicitly	assumes	that	all	 x 	which	do	not	satisfy	 =Δx z 	have	probability	zero)	The	problem	

with	the	likelihood	function	(14)	is	that	the	evaluation	of	the	sum	requires	the	enumeration	of	all	vectors	

∈x X ,	which	is	computationally	infeasible	for	even	moderately-sized	networks.	Their	solution	strategy	
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is	 to	 evaluate	 not	 the	marginal	 posterior	 p( | )zθ ,	 but	 the	 joint	 posterior	 distribution	 p( , | )x zθ ,	 by	

noting	that:	

	 p( , | ) p( | )p( | )p( )∝x z z x xθ θ θ 	 (15)	

	 In	addition,	they	assume	there	are	no	observation	errors	in	link	volumes,	so	that	p( | )= I( = )z x Δx z 	

and	 I 	denotes	the	indicator	function,	I( )=1A 	if	 A 	is	true	and	0 	otherwise.	In	order	to	sample	from	the	

joint	posterior	given	by	(15),	the	authors	proposed	a	Gibbs	sampler	(Geman	and	Geman,	1984).	Gibbs	

sampling	is	a	type	of	Markov	chain	Monte	Carlo	method	(Gelman	et	al.,	2014)	which	allows	sampling	

from	a	joint	distribution	by	sampling	from	conditional	distributions.	

	 The	proposed	Gibbs	sampler	iteratively	samples	from	the	conditional	distributions	
[ ]p( | , , )i ix −x zθ 	

and	
[ ]p( | , , )i iθ − x zθ ,	in	which	..	and	

[ ]i−θ 	denote	the	corresponding	vectors	with	component	 i 	excluded.	

This	sequence	of	conditional	samples	is	a	Markov	chain,	which	converges	(mixes)	in	the	long	run	to	the	

desired	 joint	 posterior	 distribution	 p( , | )x zθ .	 We	 can	 draw	 samples	 from	 the	 marginal	 posteriors	

p( | )x z 	 and	 p( | )zθ 	 by	 taking	 the	 corresponding	 values	 generated	 by	 the	 Markov	 chain.	 Then	

summaries	such	as	sample	mean	OD	�lows	and	standard	deviations	can	be	calculated	from	the	samples.	

3.4 Dynamic models 

All	models	discussed	up	to	this	point	 in	this	review	take	for	granted	that	transportation	systems	are	

stationary.	By	stationary	we	mean	parameters	such	as	mean	OD	�lows	and	variances	do	not	vary	over	

time.	In	this	sense	OD	�lows	random	pattern	is	static.	However,	in	reality	transportation	systems	are	non-

stationary,	 since	 social-economic	 conditions,	 infrastructure	and	other	 factors	 change	over	 time.	This	

implies	mean	OD	�lows,	variances	and	possibly	other	parameters	are	dynamic.	In	order	to	predict	future	

behavior	of	the	system	or	to	assess	the	impact	of	interventions	in	the	system	over	time,	we	should	be	

able	to	model	the	dynamic	variation	of	the	demand.	

	 The	 types	 of	 dynamic	 models	 for	 OD	matrix	 estimation	 may	 be	 classi�ied	 in	 two	 broad	 classes,	

according	to	the	time	scale	of	the	model:	within-day	and	day-to-day	models.	Within-day	models	consider	

the	time	variation	of	the	demand	for	a	speci�ied	time	period	within	a	single	day.	The	span	of	the	time	

period	under	study	may	vary	from	a	few	minutes	to	the	whole	day.	In	contrast,	day-to-day	models	are	

often	concerned	with	the	variation	of	the	demand	for	a	repeated	reference	time	period	(typically	the	

peak	hour)	over	a	sequence	of	days.	Within-day	models	are	mainly	approached	from	a	reconstruction	

perspective	via	optimization	models.	For	further	reading	on	within-day	dynamic	models,		we	refer	to	the	

works	 of	Willumsen	 (1984),	 Cremer	 and	Keller	 (1987)	 ,	 Cascetta	 (1993)	 and	 Ashok	 and	 Ben-Akiva	

(2002).	In	this	review,	we	focus	on	day-to-day	models,	which	have	been	approached	from	a	statistical	

estimation	perspective.	

	 In	 the	 day-to-day	 dynamic	 OD	 matrix	 estimation	 problem,	 we	 want	 to	 estimate	 a	 sequence	 of	

unobserved	 mean	 OD	 matrices	 given	 a	 sample	 of	 link	 volume	 vectors	 observed	 in	 a	 sequence	 of	

= 1, 2, ,t T… 	 consecutive	 days	 on	 some	 links	 of	 the	 network.	 Hazelton	 (2008)	 proposes	 a	 dynamic	

model	based	on	 the	multivariate	normal	distribution	 approximation	 to	 independent	OD	 route	 �lows	

following	 Poisson	 distributions.	 Let	 ktλ 	 be	 the	 mean	 OD	 �lows	 on	 route	 k at	 time	 t ,	 and	

T

1 2( , ,..., )t t t rtλ λ λ=λ   	with	 = | |ii
r

∈∑ I
K 	 the	number	of	routes	over	all	OD	pairs.	By	using	a	normal	

approximation,	the	conditional	distribution	of	link	volumes	 tz 	given	mean	OD	route	�lows	 tλ 	is	assumed	

to	be
Tp( | ) = N( , diag( ) )t t t tφz Δ Δ Δλ λ λ 	and	 > 0φ 	is	a	scale	factor	which	adjusts	for	link	volumes	which	

are	not	compliant	with	the	Poisson	assumption.	

	 Hazelton	(2008)	further	considers	parsimonious	parametrizations	of	the	mean	OD	route	�lows.	The	

idea	is	to	represent	the	mean	OD	route	�lows	 tλ 	as	a	function	of	a	vector	of	parameters	θ 	which	does	
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not	change	with	time.	A	possible	parsimonious	model	is	to	represent	the	vector	 tλ 	as	a	linear	model	

0= δ+t tλ λ ,	with	a	vector	of	parameters	 0= ( , , )δ φθ λ ,	so	that	we	make	inferences	on	the	initial	vector	

0λ ,	the	time	increment	vector	δ 	and	the	link	volume	scale	factor	φ .	Another	possibility	is	a	weekday-
weekend	 model,	 in	 which	 0=tλ λ 	 in	 weekdays	 and	 0=t γλ λ 	 for	 weekends	 and	 γ 	 is	 a	 demand	
adjustment	factor.	

	 Assuming	that	link	volumes	are	independent	over	time,	the	likelihood	function	of	the	observed	link	

volumes	will	be	given	by	the	following	expression:	

	 /2 1/2 T 1

=1

1
( ) = (2 ) | ( ) | exp ( ( )) ( ) ( ( ))

2

T
T

t t t t t t

t

π − − − − − − 
 

∏ Σ z Δ Σ z ΔL θ θ λ θ θ λ θ 	 (18)	

Where	
T( ) = diag( )t tφΣ Δ Δθ λ .	We	can	obtain	a	maximum	likelihood	estimator	for	θ 	by	maximizing	

equation	(18).	Alternatively,	we	can	obtain	a	Bayesian	estimator	by	specifying	a	prior	distribution	on	θ 	

and	evaluating	the	posterior	distribution	 1 2p( | , , , )Tz z z…θ .	This	will	require	the	use	of	Markov	chain	

Monte	Carlo	methods,	such	as	Gibbs	sampling	and	Metropolis-Hastings.	(Gelman	et	al.,	2014)	

	 A	 limitation	of	 this	 latter	model	 is	 that	 it	 assumes	 independence	of	 link	volumes,	which	may	not	

correspond	 to	 reality.	 In	 fact,	 it	 is	 expected	 that	 link	volumes	exhibit	 correlations	over	 time	due	 the	

nature	of	the	decision	process	of	users,	who	dynamically	adapt	to	congestion	conditions.	Pitombeira-

Neto	and	Loureiro	(2016)	proposed	a	dynamic	linear	model	for	the	time	evolution	of	OD	�lows.	They	

assume	that,	in	the	short	term,	mean	OD	�lows	 tθ 	are	locally	constant.	In	other	words,	at	time	 t 	mean	

OD	�lows	should	be	equal	to	previous	OD	�lows	at	time	 1t − 	but	shifted	by	some	stochastic	error:	

	 1= − +t t tθ θ ω 	 (19)	

	 In	which	 N(0, )t tW∼ω ,	N 	denotes	the	multivariate	normal	distribution	and	the	covariance	matrix	

tW 	determines	the	stochastic	evolution	of	mean	OD	�lows	over	time.	Moreover,	the	vector	of	observed	

volumes	 tz 	at	time	 t 	is	related	to	the	current	mean	OD	vector	 tθ 	through	an	observation	equation:	

	 =t t t t+z Fθ ν 	 (20)	

in	which	 N(0, )t tV∼ν 	is	the	observation	error	at	time	 t .	It	represents	the	variability	of	the	observed	

volumes	around	the	mean	expected	volumes	given	by	E[ ] =t t tz Fθ .	

	

	

Figure 1: Dynamic model structure 
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	 Pitombeira-Neto	 and	 Loureiro	 (2016)	 notice	 that	 special	 attention	 should	 be	 given	 to	 the	

speci�ication	of	the	covariance	matrix	 tV 	of	the	observed	volumes.	Due	to	the	network	structure,	link	

volumes	 are	 correlated	 and	 this	must	 be	 represented	 in	 the	 covariance	matrix.	 They	 identify	 three	

sources	of	variability	affecting	link	volumes:	the	generation	of	OD	�lows;	the	route	choice	process;	and	

the	counting	of	volumes	on	 the	 links.	The	structure	of	 the	dynamic	model	may	be	represented	as	 in	

Figure	1.	 	

	 Given	 mean	 OD	 �lows	 tθ ,	 they	 de�ine	 the	 conditional	 distribution	 of	 realized	 OD	 �lows	

T

1 2= ( , , , )t t t tnx x xx … 	as	 p( | ) = N( , )x

t t t tx Σθ θ ,	where	
x

tΣ is	 the	covariance	matrix	of	 the	realized	OD	

�lows.	Then,	for	each	OD	pair	 i 	they	assume	the	vector	of	route	�lows		 1 2 n( )= ( , , , )ti ti ti ti iy y yy … ,	in	which	

n( ) =| |ii K ,	 has	 a	 conditional	 probability	 distribution	 p( | , ) N( , )y

ti ti ti ti ti tix x=y p p Σ 	 with	

T

1 2 n( )= ( , , , )ti ti ti ti ip p pp … 	 the	 vector	 of	 route	 choice	 probabilities	 of	 OD	 pair	 i ∈I .	 y

tiΣ has	 a	

multinomial-like	structure	given	by:	

	 T= (diag( ) )y

ti ti ti ti tix −Σ p p p 	 (21)	

	 Let	
T

1 2= ( , , , )t t t tny y y y… .	We	specify	the	conditional	probability	density	as	p( | ) = N( , )y

t t t t ty x P x Σ

with	 tP 	 a	 block-diagonal	matrix	whose	 components	 are	 tip 	 and	
y

tΣ a	 block-diagonal	matrix	whose	

components	are	
y

tjΣ 	for	all	 i ∈I .	The	conditional	distribution	of	link	volumes	 tz 	given	route	�lows	 ty

is	de�ined	as	p( | ) = N( , )z

t t t tz y Δy Σ ,	where	
z

tΣ 	is	the	covariance	matrix	related	to	measurement	errors.	

Finally,	it	can	be	shown	that	the	conditional	density	 p( | ) = N( , )t t t t tz F Vθ θ 	with	 t t=F ΔP and	 tV 	given	

by:	

	
T T=
t

y
x z

tt t t t+ +V FΣ F ΔΣ Δ Σ 	 (22)	

in	which	
y

tΣ is	 an	 estimate	 of	
y

tΣ 	 given	 by	 susbtituting	 a	 current	 estimate	 of	 tx 	 in	 equation	 (21).	

Inference	on	mean	OD	�lows	 tθ 	at	current	time	 t 	given	a	time	series	of	traf�ic	volumes	 1 2, , , tz z z… 	is	

carried	out	by	obtaining	the	conditional	 1 2p( | , , , )t tz z z…θ 	through	Bayes	theorem,	which	can	be	shown	

to	be	multivariate	normal	with	mean	 tm 	and	covariance	matrix	 tC given	respectively	by	the	expressions	

below:	

	 = ( )t t t t t t+ −m m A z F m 	

	 T T= ( )t t t t t t t t− +C C A F C F V A 	 (23)	

with	
T T 1= ( )t t t t t t t

−+A C F F C F V .	Equations	(23)	are	computed	recursively,	one	observation	 tz 	at	a	time,	

with	 the	 prior	 density	 1 2 1p( | , , , ) = N( , )t t t t−z z z m C…θ 	 and	 an	 initial	 prior	 0 0 0p( ) = N( , )m Cθ .	

Through	simulated	experiments,	Pitombeira-Neto	and	Loureiro	(2016)	show	that	this	dynamic	linear	

model	is	capable	of	approximating	the	unobserved	mean	OD	�lows	as	more	data	is	gathered	on	traf�ic	

volumes	with	no	prior	information	on	OD	�lows.	

4. DISCUSSION 

In	the	following	subsections,	we	discuss	some	research	questions	which	are	still	not	fully	answered	in	

the	literature.	

4.1 The underspecifica>on problem 

The	underspeci�ication	problem	refers	to	the	fact	that	the	linear	relation	between	OD	�lows	and	traf�ic	

volumes,	given	by	equation	(4),	has	no	unique	solution.	It	occurs	because	real	transportation	networks	
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have	 more	 OD	 pairs	 than	 observed	 links,	 so	 that	 there	 will	 be	 many	 OD	matrices	 consistent	 with	

observed	traf�ic	volumes.	In	statitical	models,	this	problem	may	arise	as	unindenti�iability	of	parameters,	

i.e.,	even	under	the	hypothesis	of	an	in�inite	sample	of	observed	data,	it	would	not	be	possible	to	uniquely	

determine	the	parameters	of	the	statistical	model.	This	hurdle	is	often	overcome	through	some	kind	of	

regularization,	 i.e.,	 some	 enrichment	 to	 the	 model	 which	 allows	 one	 to	 obtain	 unique	 parameter	

estimates.	

	 In	some	models,	such	as	the	static	ones	presented	in	Sections	3.1	to	3.3,	regularization	takes	the	form	

of	 the	 additional	 assumption	 that	 OD	 �lows	 follow	 independent	 Poisson	 distributions.	 Under	 such	

assumption	and	some	more	weak	conditions	on	the	link-path	matrix,	Vardi	(1996)	and	Hazelton	(2000)	

show	that	mean	OD	�lows	are	 identi�iable.	But	this	only	means	that	mean	OD	�lows	may	be	uniquely	

determined	if	one	has	an	in�inite	sample	of	observed	traf�ic	volumes,	which	gives	no	hint	on	the	quality	

of	the	estimates	with	�inite	samples.	This	leads	us	to	the	following	research	question:	How	to	de�ine	the	

sample	size	of	observed	days	of	link	volumes	for	a	given	level	of	con�idence	and	a	set	of	non-redundant	links?	

	 In	their	model,	described	in	Section	3.3,	Tebaldi	and	West	(1998)	regularize	the	model	by	using	prior	

information	in	the	form	of	a	prior	OD	matrix.	This	may	be	an	old	OD	matrix	obtained	from	house	surveys.	

Nevertheless,	the	prior	OD	matrix	will	bias	the	estimate	in	its	direction.	In	other	words,	the	estimated	

OD	matrix	 will	 be	 dependent	 on	 the	 prior	 OD	matrix,	 but	 this	 dependence	 has	 not	 been	 properly	

investigated	in	the	literature.	Thus,	an	important	research	question	is:	How	sensitive	is	the	estimated	OD	

matrix	to	a	prior	OD	matrix?		

	 Besides	a	prior	OD	matrix	and	link	volumes,	new	models	are	beginning	to	incorporate	other	sources	

of	information	so	as	to	obtain	better	estimates.	Castillo	et	al.	(2008)	develop	a	model	which	uses	plate	

scanning	data,	Parry	and	Hazelton	(2012)	propose	a	model	which	uses	samples	of	route	�lows	obtained	

from	tracking	vehicles	in	addition	to	link	volumes,	and	Caceres	et	al.	(2013)	develop	a	methodology	in	

order	to	estimate	link	volumes	from	mobile	phone	data.	

4.2 Model assump>ons 

For	analytical	convenience,	many	researchers	have	assumed	that	OD	�lows	follow	independent	Poisson	

distributions,	with	the	implication	that	traf�ic	volumes	will	also	follow	Poisson	distributions	with	mean	

values	equal	 to	 their	variances.	Nevertheless,	Hazelton	 (2003)	has	argued	 that	 link	volumes	may	be	

overdispersed,	i.e.,	the	variances	may	be	greater	than	the	mean	values.	This	empirical	�inding	poses	the	

following	research	question:	Do	we	incur	severe	errors	if	we	assume	Poisson	distributions	in	the	presence	

of	overdispersion?	In	case	 link	volumes	depart	considerably	from	the	Poisson	assumption,	we	should	

consider	 the	use	of	more	 �lexible	probability	distributions	 for	OD	�lows	which	can	accommodate	 the	

possibility	of	overdispersion	or	underdispersion.	

	 Moreover,	we	should	consider	possible	dependence	regarding	OD	�lows.	As	transportation	demand	

has	a	spatial	nature,	it	seems	a	plausible	hypothesis	that	OD	�lows	that	share	the	same	origin	or	the	same	

destination	may	have	covariances	different	from	zero.	In	a	recent	study,	Shao	et	al.	(2014)	proposed	a	

model	that	estimates	both	the	mean	OD	�lows	and	their	covariances	from	link	counts.	However,	their	

approach	greatly	increases	the	number	of	parameters	to	be	estimated,	which	demands	a	large	amount	

of	data	in	order	to	obtain	estimates	with	good	accuracy.	This	leads	to	the	following	question:	How	to	

specify	parsimonious	models	which	can	estimate	OD	�lows	covariances?	

4.3 Es>ma>on of the route choice matrix 

The	route	choice	matrix	gives	the	probabilities	that	a	user	chooses	a	speci�ic	route	in	an	OD	pair.	It	is	a	

basic	component	in	most	models	and	it	is	generally	estimated	through	discrete	choice	models.	The	most	

used	model	is	the	multinomial	logit	Ben-Akiva	and		Lerman	(1985),	though	there	are	other	models	which	

consider	correlation	between	paths	in	modeling	route	choices,	such	as	the	C-logit	(Zhou	et	al.;		2012)	

and	combinatorial	paired	logit	(Chen	et	al.;		2014).	In	theory,	the	route	choice	matrix	could	also	be	jointly	

estimated	along	with	mean	OD	�lows	from	observed	link	volumes	(Lo	et	al.,	1996;	Hazelton,	2000),	at	
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the	price	of	greatly	increasing	the	number	of	parameters	to	be	estimated.	This	gives	rise	to	the	following	

research	question:	Is	it	feasible	to	jointly	estimate	route	choice	probabilities	and	mean	OD	�lows	in	real	

scale	networks?	An	alternative	approach,	pursued	by	Lo	and	Chan	(2003)	and	Hazelton	(2010),	 is	 to	

estimate	the	parameters	of	a	route	choice	model	jointly	with	the	mean	OD	�lows,	instead	of	estimating	

directly	the	route	choice	probabilities.	This	reduces	the	number	of	parameters	at	the	expense	of	adopting	

some	assumptions	on	the	choice	behaviour	of	users	according	to	the	route	choice	model	applied.	

	 Another	issue	is	that	all	models	presented	in	this	paper	depend	on	an	estimate	of	the	matrix	of	route	

probabilities	and	consequently	on	the	de�inition	of	a	set	of	routes	for	each	OD	pair.	It	is	known	that	in	

large	networks,	there	is	a	large	amount	of	paths	connecting	the	same	OD	pair,	and	many	of	these	paths	

are	not	even	considered	by	the	users.	To	�ind	the	routes	actually	used	by	drivers	over	time	is	not	an	easy	

task,	 especially	 in	 congested	 networks	 where	 drivers	may	 exchange	 routes	 constantly.	 Besides,	 the	

estimated	parameters	of	the	route	choice	models	are	affected	by	the	considered	set	of	routes.	So,	how	

sensitive	is	the	estimated	OD	matrix	to	the	route	probability	matrix	or	how	sensitive	is	the	estimated	OD	

matrix	to	the	traf�ic	allocation	matrix?	

5. CONCLUDING REMARKS 

In	this	paper,	we	reviewed	the	main	statistical	models	for	OD	matrix	estimation	based	on	link	counts.	It	

is	worth	noting	that	this	paper	focused	on	the	estimation	of	mean	OD	matrix	rather	than	reconstruction	

of	a	realized	OD	matrix	that	generated	a	given	set	of	observed	link	volumes.	Estimation	methods	lye	on	

the	main	assumption	that	the	trip	patterns	in	a	transportation	network	vary	over	time	and	we	are	inter-

ested	in	estimating	a	mean	OD	pattern.	In	contrast,	reconstruction	methods	are	applied	for	the	case	of	

deterministic	OD	�lows	or	when	we	are	interested	in	�inding	a	certain	OD	matrix	for	a	speci�ic	time	ref-

erence.	

	 The	potential	of	these	methods	to	support	transportation	operations	and	planning	has	been	the	main	

motivation	for	many	years,	more	than	four	decades,	of	research	efforts.	It	is	believed	that	in	nowadays,	

with	the	possibility	of	acquiring	data	of	traf�ic	�lows	at	low	cost	and	in	real	time	from	traf�ic	monitoring	

systems,	we	can	�inally	understand	the	variation	of	traf�ic	volumes	on	a	real	scale	network	and	explore	

in	what	conditions	reconstruction	and	estimation	methods	can	be	applied.	As	discussed	here	and	 in	

Oliveira	Neto	et.	al	(2016),	all	methods	suffer	from	the	similar	limitations,	related	to	the	underspeci�ica-

tion	problem,	model	speci�ication,	and	estimation	of	the	route	choice	matrix,	giving	rise	to	open	research	

questions.	

	 This	paper	dealt	speci�ically	with	the	problem	of	estimating	either	static	or	dynamic	OD	�lows,	repre-

sented	by	models	whose	parameters	are	estimated	by	means	of	maximum	likelihood,	the	method	of	mo-

ments	or	Bayesian	inference.	These	models	represent	an	advance	in	the	past	literature	that	focused	on	

reconstruction	of	an	approximately	deterministic	OD	matrix.	Although	the	problem	of	reconstructing	

and	estimating	OD	matrix	from	traf�ic	counts	have	attracted	considerable	attention	in	the	past	decades,	

there	is	still	many	gaps	to	be	ful�illed	so	as	to	decide	whether	or	not	practitioners	should	invest	in	more	

sophisticated	models	in	real	scale	transportation	planning.	On	the	list	below	we	point	to	some	research	

directions	we	think	should	be	pursued	in	order	to	advance	the	theory	and	applications	of	the	models	for	

estimation	of	OD	matrices:	

	 To	analyse	the	sensitivity	of	estimated	OD	matrices	to	prior	OD	matrices:	Due	to	the	underspeci�ication	

problem,	most	models	rely	on	a	prior	OD	matrix.	There	is	little	research	reported	in	the	literature	on	the	

sensitivity	of	the	estimated	OD	matrix	to	a	prior	matrix.	

	 To	assess	the	magnitude	of	the	estimation	error	as	the	sample	size	of	observed	traf�ic	volumes	increases:	

In	real	networks,	observed	links	form	a	small	subset	of	all	links	in	the	network.	Knowledge	of	how	the	

size	of	this	subset	affects	the	estimation	error	can	support	the	decision	on	how	many	links	should	be	

observed.	Likewise,	the	dependence	of	the	estimation	error	on	the	number	of	days	for	which	one	has	

observations	on	link	volumes	has	not	been	fully	addressed	yet.	

	 To	investigate	the	validity	of	the	Poisson	assumption:	Although	some	papers	in	the	literature	already	
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consider	the	relaxation	of	the	Poisson	assumption	for	OD	�lows,	this	assumption	may	be	required	for	the	

sake	of	analytical	or	computational	tractability.	The	trade-off	between	model	complexity	and	tractability	

should	be	balanced	in	favor	of	the	latter	for	the	models	to	be	applicable	to	real	transportation	networks.	

	 To	 develop	 statistical	models	which	 jointly	 consider	 the	 probabilistic	 nature	 of	 OD	 �lows	 and	 route	

choices:	Most	statistical	models	have	assumed	 that	 the	 route	 choice	matrix	 is	previously	known	and	

independent	 of	 the	 OD	matrix,	which	 is	 a	 valid	 assumption	 for	 uncongested	 networks.	 However,	 in	

congested	networks	route	choices	are	dependent	on	the	OD	matrix,	in	order	that	the	route	choice	matrix	

has	to	be	estimated	along	with	OD	�lows.	In	deterministic	models	this	has	been	done	through	equilibrium	

traf�ic	assignment.	Nevertheless,	it	is	known	that	the	classical	de�inition	of	stochastic	user	equilibrium,	

due	to	Daganzo	and	Shef�i	(1977),	does	not	imply	an	equilibrium	probability	distribution	on	OD	�lows	

(Hazelton,	 1998;	 Nakayama	 and	Watling,	 2014).	 Hence,	 the	 modelling	 of	 OD	 �lows	 through	 a	 fully	

probabilistic	model	which	 does	 not	 assume	 an	 equilibrium	state	may	 provide	 new	 insights	 into	 the	

problem.	

	 To	develop	models	which	take	into	account	spatial	correlation	among	OD	�lows:	Most	models	proposed	

in	the	literature	have	assumed	that	OD	�lows	are	independent.	Nevertheless,	transportation	demand	has	

a	strong	spatial	nature	and	it	is	expected	that	OD	�lows	exhibit	positive	or	negative	spatial	correlation.	

The	explicit	modeling	of	spatial	correlation	may	add	new	sources	of	data	and	contribute	to	reducing	the	

underspeci�ication	problem	and	estimation	errors.	

	 Finally,	 we	 point	 out	 that	 the	 recent	 development	 of	 dynamic	models	 is	 a	 promising	 avenue	 for	

research.	Dynamic	models	may	mitigate	the	underspeci�ication	problem,	as	argued	by	Marzano	et	al.	

(2009).	Pitombeira-Neto	and	Loureiro	(2016)	have	recently	shown	through	simulation	studies	that	it	is	

possible	 to	estimate	OD	 �lows	with	no	prior	 information	 if	 assignment	matrices	are	known,	and	 the	

accuracy	 of	 the	 estimates	 gets	 better	 as	more	 observations	 on	 link	 volumes	 are	 gathered.	 Dynamic	

models	also	do	not	rely	on	the	equilibrium	assumption	and	allow	the	consideration	of	time	dependence	

in	OD	 �lows	and	route	 �lows.	Moreover,	 the	study	of	 the	 time	variation	 in	OD	 �lows	may	allow	novel	

applications	in	transportation	planning	through	the	analysis	of	long	term	trends	in	OD	demand.	
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Castillo,	E.;	J.	M.	Menéndez	and	P.	Jiménez	(2008)	Trip	matrix	and	path	�low	reconstruction	and	estimation	based	on	plate	

scanning	and	link	observations.			Transportation	Research	Part	B,	v.	42,	p.	455–481.	DOI:	10.1016/j.trb.2007.09.004	

Chen,	A.	S.;	Ryu;	X.	Xu	and	K.	Choi	(2014)	Computation	and	application	of	the	paired	combinatorial	logit	stochastic	user	

equilibrium	problem.	Computers	and	Operations	Research,	v.	43,	p.	68–77.	DOI:	10.1016/j.cor.2013.08.022	

Cremer,	M.	and	H.	Keller	(1987)		A	new	class	of	dynamic	methods	for	the	identi�ication	of	origin-destination	�lows.			

Transportation	Research	Part	B,	v.	21,	p.	117–132.	DOI:	10.1016/0191-2615(87)90011-7	

Daganzo,	C.	F.	and	Y.	Shef�i	(1977)	On	stochastic	models	of	traf�ic	assignment.	Transportation	Science,	v.	11,	n.	3,	p.	253–274.	

DOI:	10.1287/trsc.11.3.253	

Gelman,	A.;	J.	B.	Carlin;	H.	S.	Stern;	D.	B.	Dunson;	A.	Vehtari	and	D.	B.	Rubin	(2013)	Bayesian	Data	Analysis	(3rd	ed.).	Chapman	&	

Hall,	Boca	Raton,	FL,	USA.	



Neto, A. R. P.; Neto, F. M. O.; Loureiro, C. F. G. Volume 25 | Número 4 | 2017  

TRANSPORTES | ISSN: 2237-1346 13 

Geman,	S.	and	D.	Geman	(1984)	Stochastic	relaxation,	gibbs	distributions,	and	the	bayesian	restoration	of	images.			IEEE	

Transactions	on	Pattern	Analysis	and	Machine	Intelligence,	v.	6,	n.	6,	p.	721–741.	DOI:	10.1109/TPAMI.1984.4767596	

Hastings,	W.	K.	(1970)	Monte	carlo	sampling	methods	using	markov	chains	and	their	applications.			Biometrika,	v.	57,	n.	1,	p.	

97–109.	DOI:	10.2307/2334940	

Hazelton,	M.	L.	(1998)	Some	remarks	on	stochastic	user	equilibrium.	Transportation	Research	Part	B,	v.	32,	p.	101–108.	DOI:	

10.1016/S0191-2615(97)00015-5	

Hazelton,	M.	L.	(2000)	Estimation	of	origin-destination	matrices	from	link	�lows	on	uncongested	networks.			Transportation	

Research	Part	B,	v.	34,	p.	549–566.	DOI:	10.1016/S0191-2615(99)00037-5	

Hazelton,	M.	L.	(2001)	Inference	for	origin-destination	matrices:	estimation,	prediction	and	reconstruction.	Transportation	

Research	Part	B,	v.	35,	p.	667–676.	DOI:	10.1016/S0191-2615(00)00009-6	

Hazelton,	M.	L.	(2003)		Some	comments	on	origin-destination	matrix	estimation.			Transportation	Research	Part	A,	v.	37,	p.	

811–822.	DOI:	10.1016/S0965-8564(03)00044-2	

Hazelton,	M.	L.	(2008)		Statistical	inference	for	time	varying	origin-destination	matrices.			Transportation	Research	Part	B,	v.	

42,	p.	542–552.	DOI:	10.1016/j.trb.2007.11.003	

Hazelton,	M.	L.	(2010)	Bayesian	inference	for	network-based	models	with	a	linear	inverse	structure.			Transportation	Research	

Part	B,	v.	44,	p.	674–685.	DOI:	10.1016/j.trb.2010.01.006	

Lo,	H.-P.;	N.	Zhang	and	W.	H.	K.	Lam	(1996)	Estimation	of	an	origin-destination	matrix	with	random	link	choice	proportions:	a	

statistical	approach.			Transportation	Research	Part	B,	v.	30,	p.	309–324.	DOI:	10.1016/0191-2615(95)00036-4	

Lo,	H.-P.	and	C.-P.	Chan	(2003)	Simultaneous	estimation	of	an	origin-destination	matrix	and	link	choice	proportions	using	

traf�ic	counts.			Transportation	Research	Part	A,	v.	37,	p.	771–788.	DOI:	10.1016/S0965-8564(03)00048-X	

Marzano,	V.;	A.	Papola	and	F.	Simonelli	(2009)	Limits	and	perspectives	of	effective	O-D	matrix	correction	using	traf�ic	counts.			

Transportation	Research	Part	C,	v.	17,	p.	120–132.	DOI:	10.1016/j.trc.2008.09.001	

Nakayama,	S.	and	D.	Watling	(2014)	Consistent	formulation	of	network	equilibrium	with	stochastic	�lows.			Transportation	

Research	Part	B,	v.	66,	p.	50–69.	DOI:	10.1016/j.trb.2014.03.007	

Oliveira	Neto,	F.	M.;	A.	R.	Pitombeira	Neto;	C.	F.	G.	Loureiro	and	B.	V.	Bertoncini	(2016)	Discussão	conceitual	sobre	métodos	de	
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