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 ABSTRACT  

This paper describes a procedure for fi/ng traffic stream models using very large traffic 

databases. The proposed approach consists of four steps: (1) an ini.al treatment to elim-

inate noisy, inaccurate data and to homogenize the informa.on over the density range; 

(2) a first fi/ng of the model, based on the sum of squared orthogonal errors; (3) a 

second filter, to eliminate outliers that survived the ini.al data treatment; and (4) a sec-

ond fi/ng of the model. The proposed approach was tested by fi/ng the Van Aerde 

traffic stream model to 104 thousand observa.ons collected by a permanent traffic 

monitoring sta.on on a freeway in the metropolitan region of São Paulo, Brazil. The 

model fi/ng used a gene.c algorithm to search for the best values of the model param-

eters. The results demonstrate the effec.veness of the proposed approach. 

 

RESUMO   

Neste ar.go, descreve-se um procedimento para ajustar modelos de correntes de trá-

fego a par.r de bases de dados muito grandes. O procedimento proposto consiste em 

quatro etapas: (1) um tratamento inicial nos dados para eliminar observações espúrias 

(ruído) e homogeneizar a informação ao longo de toda a gama de densidades obser-

vada; (2) um ajuste inicial do modelo, baseado na soma dos erros quadrá.cos ortogo-

nais; (3) uma segunda filtragem de dados, visando eliminar os outliers que sobreviveram 

ao tratamento inicial para eliminação do ruído; e (4) um segundo ajuste final do modelo. 

O método proposto foi testado ajustando-se o modelo de correntes de tráfego de Van 

Aerde a um conjunto de 104 mil observações coletadas por uma estação permanente 

de monitoramento de tráfego instalada numa autoestrada na região metropolitana de 

São Paulo. A calibração do modelo usou um algoritmo gené.co para procurar os melho-

res valores dos parâmetros do modelo. Os resultados ob.dos demonstram a eficiência 

do método proposto. 
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1. INTRODUCTION 

Traf�ic stream analysis usually uses data collected by traf�ic sensors at permanent traf�ic moni-

toring stations (PTMS), which, working continuously over months and years, can accumulate a 

very large amount of observations. However, this data includes noise that can skew the models. 

Road construction, accidents, bad weather, sensor malfunction, and incidents that affect the 

traf�ic stream behavior are unusual conditions that do not represent regular road operation.  
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It can be expected that in a very large database (VLDB) covering several years, a considerable 

portion of the speed-�low observations includes noise.  

 This study proposes a process for �itting traf�ic stream models using very large data sets.  

The proposed method includes a �irst treatment to standardize the volume of information 

across the range of traf�ic stream densities and reduce noise. The model is then calibrated by a 

two-step optimization process to eliminate the noise that survived the �irst �ilter. The proposed 

procedure used a genetic algorithm (GA) to search for the best values for model parameters, 

but any other optimization technique could be used. The traf�ic stream model chosen to test the 

process was the one proposed by Van Aerde (Rakha, 2009), as it is a well-known model; any 

other model, however, could have been used. 

2. LITERATURE REVIEW 

2.1. Traffic stream models and their calibra�on 

A traf�ic stream model describes the macroscopic relationships between �low (�), speed (�) and 

density (�) (May, 1990) in a system of equations consisting of: 

                                                                                0 = ��
�� + �


��                                                                       (1) 

 � =  � ⋅ � (2) 

 � = �(�) (3) 

where Eq.1 is a continuity equation concerning the space (�) and time (�) domain; Eq. 2 is a 

state equation, and Eq.3 establishes a relation (function �) between speed and density (Lu et	

al., 2010). The fundamental hypothesis for de�ining a model is that, for each speci�ic location, 

there is a relationship among �, �, and �, called the fundamental equation (Eq. 2), which con-

tains the solutions for a steady-state model for this traf�ic stream (Kerner, 2004). Traf�ic stream 

models are the subject of constant studies given their informational capacity regarding the  

characteristics of the roads and drivers (Coifman, 2014). 

 The empirical fundamental relationship (the speed-density or speed-�low models) is �itted 

using data collected by traf�ic monitoring stations (Hall et	al., 1992; Coifman, 2014), which pro-

vide, for a given observation time interval, measurements of �low rate, speed, and occupancy (of 

which density can be estimated), to which one an error is associated. It is well known that the 

regression of a dependent variable � as a function of an independent variable � such that 

� = �(�) does not produce the same relation as the regression of � as a function of � (Draper & 

Smith, 1980). To avoid this problem, in a regression, one must clearly de�ine which independent 

variables and which dependent variables, since it assumes that only the dependent variable 

contains a measurement error. When �itting a traf�ic model, this means that the regression 

 � = �(�), which presupposes that the density � is the explanatory (independent) variable and 

that the speed �  is the dependent variable, minimizes only the error associated with the esti-

mated speed. Rakha & Arafeh (2010) demonstrate that this is not the case with traf�ic stream 

models since it is not easy to de�ine which the independent variable is and that, depending on 

the situation, any of the three variables may be the determining factor for traf�ic behavior, and 

all three variables inherently carry a measurement error.  

 To overcome this problem, Rakha & Arafeh (2010) suggested that the calibration should be 

based on a neutral regression, which does not require the determination of the dependent  

variable, and the adjustment seeks to minimize the normalized orthogonal quadratic error of 

the fundamental diagram of the chosen model. This optimization model can be described as: 
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 minimize � = ∑ ��������
�� �� + �������

� �� + �
��
! �

" ��#$  (4) 

subject to: 

                                                                            ��$ = �(�!$) ∀&, (5) 

 ��$ = �!$ × ��$  ∀&, (6) 

 ��$,  �!$ ,  ��$ ≥ 0 ∀&, (7) 

where � is the estimated orthogonal quadratic error; �$ , �$ and �$  observed speed, �low, and 

density values for the &-th observation; ��$ , ��$ and �!$  are the estimated values for speed, �low, and 

density for a &-th observation; and � , �  and �"  are the maximum observed values for speed, �low, 

and density. The neutral regression method can be applied to any traf�ic stream model (Rakha 

& Arafeh, 2010) and can be solved using any optimization technique. 

 This formalism supports the development of empirical �low-density and speed-density rela-

tionships, based on empirical observations of the values of u and q (Kerner, 2004). Permanent 

traf�ic monitoring stations, where sensors count and classify vehicles and measure their speed, 

are used to collect traf�ic stream data. Because each road segment has its own peculiarities, 

these empirical observations of traf�ic variables lead to a unique fundamental diagram (Knoop 

& Daamen, 2017). The collection of empirical data, however, is associated with some problems 

that need attention before the data is ready for model �itting. 

2.2. Empirical data for fi'ng traffic stream models 

The use of raw traf�ic data to calibrate empirical fundamental relationship is linked to many 

problems (Knoop & Daamen, 2017): (i) the traf�ic stream may not be in equilibrium during the 

observation period; (ii) the traf�ic stream is heterogeneous; (iii) the detectors have limitations 

(such as not being able to detect stationary vehicles) and are subject both to failure and  

measurement errors; (iv) the number of vehicles measured during an interval is always integer; 

and (v) the average speed recorded by the sensor is the time-mean speed. Regarding this last 

aspect, Knoop et al. (2009) compared the time-mean speed and the space-mean speed using 

individual vehicle data for a motorway segment, showing that “the space-mean speed gives a 

better �it for the fundamental diagram”. The authors also point out that the use of time mean 

speeds affect mostly the congested �low region, underestimating the jam density and the shock-

wave speed.  

 Fitting traf�ic models to empirical data bring up another problem, which is the noise inherent 

to the traf�ic sensor data. There may be incidents (e.g., roadwork, traf�ic bans, accidents, bad 

weather, sensor malfunctions, etc.) during the period over which the data is collected that are 

not representative of the normal operation. This noise (i.e., inaccurate information) can nega-

tively affect the quality of the �itted model. In the absence of reliable information about such 

incidents, it is necessary to create a way to �ilter the raw data to minimize the noise. Models 

used to detect freeway incidents, which incorporate techniques such as fuzzy logic, wavelets, 

and neural networks to reduce noise and increase their reliability (Karim & Adeli, 2002) 

demonstrate the importance of raw data �iltering.  

2.3. The use of large databases for the calibra�on of traffic models 

With the increasing availability of data collected by PTMS, the use of large databases for the 

calibration of traf�ic models became more common. The literature shows traf�ic models cali-

brated using data collected during peak hours on speci�ic days (Ma & Abdulhai, 2002; Hourdakis 
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et al., 2003; Yang & Ozbay, 2011; Balakrishna et al., 2007; Henclewood et al., 2013) and covering 

several days or weeks (Jha et al., 2004; Toledo et al., 2004; Qin et al., 2004; Lee & Ozbay, 2009; 

Zhang et al., 2008; Knoop et al., 2009). When traf�ic data covers several months and even years, 

the database comprises tens of thousands of observations and is considered a very large data-

base (VLDB). Dealing with VLDB, Dervisoglu et al. (2009) reported using 27,000 observations 

obtained good results in fundamental diagram calibration observing the breakdown point. Qu 

et al. (2015) used 48,000 observations and a weighted least square method to calibrate both 

light-traf�ic/free-�low conditions and congested/jam conditions separately; and Zhong et al. 

(2016) have used 10,000 observations for a cell transmission model �itting which implied the 

division of the data in analysis regions (cells) and training sets.   

 Using a VLDB to �it a traf�ic model requires automating the calibration procedure, due to the 

sheer amount of data processed. The following sections in this paper describe the traf�ic data 

and the proposed approach. 

3. THE PROPOSED APPROACH 

To calibrate the fundamental diagram using a very large database (VLDB), the proposed  

approach consists of the following steps: (1) data aggregation; (2) noise reduction; (3) �irst-

stage model calibration; and (4) second-stage model calibration. All steps are based on average 

speed (�) and density (�) data, because there is a monotonous relationship between these two 

variables (Wu, 2002): � never increases with an increase in � – i.e., low densities imply in high  

average speeds and vice-versa. The next sections explain the proposed approach. 

3.1. Data aggrega�on 

A very large traf�ic database includes observations on congested and non-congested �low re-

gimes, with the former being much rarer than the latter, even for locations where traf�ic jams 

are very common.  Thus, a scatterplot of (�, �) data will show many more data points repre-

senting uncongested �lows than congested �lows. This unbalance will bias the model, resulting 

in a poorly �it model, whichever calibration procedure is used. The best way to eliminate this 

bias is to aggregate the data into density classes, in such way that all classes have the same 

weight in the calculations to �it the model (Wu, 2002; Rakha & Arafeh, 2010).   

 Instead of providing individual vehicle data (speed, class and timestamp), from which space-

mean speed and density could be easily derived, typical PTMS data consist of vehicle counts and 

average speeds for predetermined time intervals (5 or 15 minutes). From such data, density for 

a given observation interval may be estimated using � = �/,, assuming that the time-mean 

speed , is an adequate estimate of the space-mean speed.  With the (�, �) data, the next step is 

choosing the range of the density classes. The selected range must provide a suf�iciently large 

number of data points for �itting the model and the choice will depend on the available data and 

other intervening factors. 

 Within each class, several individual observations of speed and density will be available. 

However, a single pair of values (�, �) should be obtained for each density class. Coifman (2014) 

chose the average speed median and the density median. In this study, the selection of the value 

for speed and density employed the cumulative distribution, using a prede�ined percentile,  

similar to the approach used by Punzo & Montanino (2016) The next step in the method is noise 

attenuation. 
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3.2. Noise reduc�on 

In a traf�ic stream, high speeds are associated with low density values. Thus, observations made 

at very low densities should theoretically result in average speeds close to the free �low speed. 

In a VLDB, it is possible to �ind very low densities linked to very low speeds, representing  

anomalous operating conditions (road maintenance, lane closures, bad weather, etc.). Ideally, 

information on periods of anomalous operating conditions would be available to purge this 

noise from the database.  

 In many cases, however, such information is not readily available or is not dependable.  

For these situations, a noise attenuation step improves the quality of the �itted model. A prelim-

inary dataset analysis indicated that the initial data aggregation procedure eliminates some, but 

not all, of this noise. Evidence of anomalous data is the presence of data points with low densi-

ties and low speeds after the �irst step. In this study, investigations on possible ways to reduce 

the noise in low-density data points indicated that eliminating very low-density data points 

from the dataset would affect the �itted model minimally. The proposed approach employs a 

�ilter that requires the selection of �-./, a lower threshold value for density – that is, any data 

point with �$ ≤ �-./ is purged from the dataset. The value of this density threshold is highly 

dependent on the dataset. A good indication of this threshold is the density beyond which speed 

never increases with an increase in density.  

 The model calibration in two stages also helps to reduce noisy data associated with high-

density observations, as explained in the next sections. 

3.3. First-stage model calibra�on  

Once most of the noise is purged from the data, the �irst stage of the model calibration ensues. 

The user must choose the traf�ic stream model and the optimization method that will be used 

in this step. For instance, Wang et al. (2011) and Ni (2016) review several traf�ic models that 

could be used for this purpose.  

 Any optimization method may be used to calibrate the model with a carefully chosen objec-

tive function. At the end of this stage, a �itted model � = �1(�) is available to support the second-

stage calibration.  

 Some researchers (Rakha & Arafeh, 2010; Wang et al., 2011) used a single calibration stage 

and obtained very good models; none of them, however, employed a VLDB to �it the model.  

The absence of reliable information on the occurrence of anomalous operating conditions to 

purge the VLDB, however, might imply in some loss of accuracy due to noise escaping the �ilters 

of the �irst two steps in the method. Hence, a second-stage calibration is included to further 

re�ine the �itted model. 

3.4. Second-stage model calibra�on 

The second-stage calibration uses the �irst-stage model  � = �1(�) to remove outlying data 

points missed by the initial �ilter.  To do so, for each density class &, an estimate of the average 

speed ��$ = �1(�$) is calculated and compared to the average speed �$  for that class. If |��$ − �$| ≥
4, where 4 is a predetermined acceptable tolerance, that data point is considered as an outlier 

and discarded. The value of 4 should be selected carefully, after inspection of the data and the 

�itted model. 
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 The dataset obtained after this last �ilter is then used to �it the model through the same opti-

mization method used in the �irst-stage calibration. The proposed approach can be easily auto-

mated using any programming language. The next sections explain how this was done in this 

study.  

4. CASE STUDY 

To demonstrate the effectiveness of the proposed approach, it was applied to the calibration of 

the fundamental diagram of a segment of freeway in the metropolitan region of São Paulo,  

Brazil, using a database comprising more than 104,000 observations.  

4.1. Descrip�on of traffic data 

The permanent traf�ic monitoring station (PTMS) selected to test the proposed approach is in-

stalled on a freeway section without signi�icant longitudinal grades, where access is controlled 

and is outside the area of in�luence of on- or off-ramps. In addition, because capacity is routinely 

reached at this location, the data contains observations in the uncongested and the congested 

�low regions. This PTMS is located on a major freeway in the metropolitan region of São Paulo 

(SP070, km 39.5 East), on a three-lane segment that can be considered a basic freeway section. 

The closest off-ramp is located at approximately 4 km downstream from the PTMS; the nearest 

on-ramp is located around 3 km upstream from the sensor. Traf�ic data were provided by  

ARTESP (São Paulo State Transportation Agency) and cover the period from September 1, 2011 

to December 31, 2017.  

 The PTMS chosen collects traf�ic data using inductive loop sensors. Data records consist of 

date, time, heavy vehicle count, passenger car count, and average speed for 15-minutes inter-

vals. The average speed is the time-mean speed for the 15-minute interval and not the space-

mean speed, as would be desirable. For this study, only the observations recorded between 

5 AM and 10 PM were used, as it was considered that the traf�ic at late hours and dawn is not 

representative, due to the low volume of passenger-cars and the large percentage of heavy ve-

hicles. In this section of the freeway, the speed limit for passenger cars (120 km/h) is higher 

than the speed limit of heavy vehicles (90 km/h). The average speed recorded by the PTMS is 

the average speed of all vehicles (cars and heavy vehicles) traveling over the segment.  

 As described in another paper (Cardoso et al. 2019), the data were treated to eliminate  

observations made in rainy weather, based on information from weather radar from  

IPMet/UNESP. In addition to this treatment, in processing data for VLDB composition, observa-

tions that showed apparent errors of sensor malfunctioning were excluded (such as the pres-

ence of repeated values several times, hugely discrepant values regarding the time series,  

absence of information and so on). After this step, the database contained 103,606 observa-

tions. However, these data contain noise, because there was no information on roadwork, acci-

dents, sensor malfunction, and other incidents that may interfere with the regular operation of 

the traf�ic. 

4.2. Data aggrega�on 

To be successful, the calibration of a traf�ic model requires information on uncongested and 

congested conditions.  Even in a freeway that regularly experiences traf�ic jams (such as the one 

chosen for this study), it is far more common to �ind uncongested 15-minute periods than it  
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is to �ind congested 15-minute periods in one year. Therefore, there will be an imbalance in 

information on congested and uncongested conditions, biasing the �itted model.  

 Figure 1 illustrates the problem of using raw data for model �itting. In the plot, the darker the 

color of a data point, the greater the frequency of the values represented by that data point, as 

the gray scale on the graph legends shows. The number of observations made under congested 

conditions (high density, low speed and low �low rates) is much smaller than the number of 

observations made under uncongested conditions. Furthermore, there is a great concentration 

of observations between 5 and 10 pce/km/lane, with speeds around 110 km/h and �low rates 

between 400 and 1200 pce/h/lane. The blue lines represent a model �itted to the 103,606 data 

points. The resulting 900 pce/h/lane capacity is much lower than the observed maximum �low 

rates, indicating the bias caused by the large number of observations in the darker gray area in 

Figure 1, as they will have a higher weight in the estimation of the �itted model error. The best 

way to reduce this undesirable effect consists of aggregating the raw data so that all density 

ranges have the same weight in model calibration (Rakha & Arafeh, 2010). 

 For the data aggregation, �low rates were converted from veh/h/lane into pce/h/lane using 

the PCE value adopted by ARTESP (�5 = 2.5) and densities were estimated using Equation 2, 

where � is the �low rate, in pce/h/lane, and � is the average speed of all vehicles (in km/h) and 

the density � is given in pce/km/lane.  

 

 

  
Figure 1. The need for raw data aggregation into classes is demonstrated by fitting a traffic model to the raw data. The 

large number of observations with density between 5 and 10 pce/km/lane biases the fitted model (blue lines), 

resulting in a much smaller capacity than the observed maximum flow rates. 
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 The class range selected for this study is 0.25 pce/km/lane, because it provided a suf�iciently 

large number of data points for �itting the model. For each class, the mean, median and 85th-

percentile of speed and density were calculated, as shown in the histogram in Figure 2. The 

values for speed and density for each class were the 85th-percentiles of the cumulative speed 

and density distributions for the class (as shown in Figure 2). The 85th percentile was chosen 

on the assumption that it better represents the average speed of cars, given that the raw data is 

the average speed of all vehicles (cars and heavy vehicles) and that, in this segment of the free-

way, the posted speed limit for cars is 30 km/h higher than the speed limit for heavy vehicles. 

 

 
Figure 2. Aggregation of raw field data to homogenize the information over the observed range of density (SP070,  

km 39.5 East). The cumulative histogram illustrates the observed average speed distribution for densities in the 

range of 7.00 to 7.25 cpe/km/lane. 

 

 The aggregation of data transformed the 103,606 observations into 146 pairs of speed and 

density data, ensuring that the information about the behavior of the traf�ic stream is homoge-

neously distributed over the range of observed densities. Figure 2 shows the raw data, the mean 

and the median for each density class. It is possible to notice that, despite covering more than  
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6 years, the �ield data contains little information about the region close to the jam density  

(� > 40 veic/km/lane). This is a limitation of the data set; if the data had been collected at 

shorter intervals (for instance, at 5-minute intervals instead of 15-minute intervals), perhaps 

higher densities would have appeared more frequently in the traf�ic data. 

4.3. Noise reduc�on 

Figure 1 also shows the effect of noise in the raw �ield data, which is more apparent on the 

speed-density graph. The region where density is low (� <  5 pce/km/lane) and speed is also 

low (� < 80 km/h) represent highly anomalous operating conditions, in which vehicles are 

traveling at speeds far below the posted speed limit (120 km/h) with inter-vehicular spacing 

greater than 200 m, when one would expect that such spacing should correspond to speeds 

close to the free speed.  

 Figure 2 shows that the data aggregation eliminates some of the noise, but some noise still 

remains in the low-density region. For a traf�ic stream behaving normally, the speed-density 

relationship is a monotonically decreasing function – that is, the speed decreases or stays con-

stant with the increase of density. When the raw data contains anomalous operating conditions 

(such as, when � < 5 veic/km/lane, in Figure 2), this condition does not exist. To reduce the 

noise associated with the identi�ied low-density anomalous observations, only data points with 

density greater than �low should be used in the calibration. For this site, �low was selected as  

5 pce/km/lane and the application of this �ilter reduced to number of data points to 126  

from 146. 

4.43. Selec�on of the traffic model 

The proposed approach can use any traf�ic model. For this case study, the model selected was 

the Van Aerde model (Van Aerde, 1995), because it is a versatile model that can model both 

uncongested and congested �lows with the same equation. The Van Aerde model combines the 

Pipes and Greenberg models (Lu et al., 2010) and can represent free and congested �lows 

through a single mathematical function, without the need to establish breakpoints that separate 

these two regimes (Van Aerde, 1995; Rakha, 2009). Due to its mathematical structure, this 

model can adequately represent the behavior of traf�ic �low on freeways, two-lane roads, or 

even urban arterial roads (Rakha & Crowther, 2003) and, because of this versatility, the German 

capacity manual HBS (Handbuch	für	die	Bemessung	von	Straßenverkehrsanlagen) has adopted 

the Van Aerde model (FGSV, 2015). 

 The Van Aerde traf�ic stream model is based on four parameters: the free �low speed �= , the 

speed at capacity �> , the �low rate at capacity �> , and the jam density �?  (Rakha, 2009). Mathe-

matically, the model is expressed by: 

 � =  � ⋅ � (8) 

 � = 1
>@A BC

DEFDA>G� (9) 

where H1, H�, and HI are constants that can be calculated using the following equations  

(Demarchi, 2003): 

                                                                        H1 = �E

J  �BC

K2�> − �=L (10) 

                                                                         H� = �E

J �BC

K�= − �>L�  (11) 
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 HI = 1
�J

− �E

J �BC

. (12) 

4.4. Selec�on of the op�miza�on technique for model calibra�on 

Van Aerde & Rakha (1995) used a hill-climbing search to �it the traf�ic model to the data; Rakha 

& Arafeh (2010) adopted a multistage search to �ind the set of parameters that best �it the data. 

In this study, a genetic algorithm (GA) was used to �it the Van Aerde traf�ic model to the data, 

because genetic algorithms are able to better explore the solution space from a multitude of 

points and, therefore, are less susceptible to entrapment by local minima. 

 Genetic algorithms are a stochastic search method that mimics the theory of evolution and 

natural selection, in the sense that individuals best adapted to the environment (the better  

solutions to the problem) are more likely to survive. In GAs, a �itness function measures the 

degree of adaptation to the environment of an individual – i.e., the quality of a given solution 

(Goldberg 1989, p. 9). 

 The �itness function adopted for the GA is given by Eq. 13. By normalizing the �low, density, 

and speed values, the optimization problem can be expressed by:  

 minimize � = ∑ ��������
�� �� + �������

� �� + �
��
! �

" ��#$  (13) 

 with �!$ = 1
>@A BC

DEFD�A>G��
 ∀&, (14) 

      ��$ = �= M1 − 
OP

J

Q ∀&,  and (15) 

    ��$ = �!$ × ��$  ∀&, (16) 

subject to speci�ic restrictions for this application, which are: 

 ��$ ≥ 0 ∀&, (17) �= ∈ S(0.9 × �lim), (1.1 × �lim)U (21) 

�!$ ≥ 0 ∀&, (18) �> ∈ S50, 105U km/h , (22) 

��$ ≥ 0 ∀&, (19) �> ∈ S1000, 3000U pce/h/lane, and (23) 

�> ≤ 0.9 �= , (20) �? ∈ S65, 125U pce/h/lane (24) 

where �lim is the posted speed limit, and all the other variables have already been de�ined. 

 
Figure 3. Overview of the genetic algorithm used to fit the Van Aerde model to the traffic data 
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 The �lowchart of Figure 3 shows the structure of the genetic algorithm, which was coded in 

Python v.3.7.0. The process starts with the creation of a population of X individuals. Due to the 

particularities of each problem, there is no general rule for de�ining the population size X  

(Diaz-Gomez & Hougen, 2007). The size X of the initial population is a critical factor as it has a 

major in�luence on the computational cost of the process. If X is too small, the algorithm might 

converge early, while a too large X might waste computational resources due to the high num-

ber of iterations required to improve the result (Arabas et al., 1994). The classic approach that 

de�ines X by the rule X = 10 × Y, with Y being the number of genes (Storn, 1996), was chosen. 

As, for this study,  Y = 4, then X = 40. 

 Each individual or solution consists of a randomly created set of four model parameters 

(genes): free-�low speed (�=), speed at capacity (�>), �low rate at capacity (�>), and jam den-

sity (�?). In the generation of individuals, a series of checks ensures that the solution is feasible. 

Eqs.17 to 24 express these restrictions. 

 Once the initial population is established, the �ittest individual must be found.  To do this, the 

following steps are taken for all solutions in the population:  

1) H1, H� and HI are calculated from �= , �> , �> , and �?  using Eqs. 10 to 12; 

2) Eq.14 and H1, H� and HI are used to calculate �!$; 

3) ��$  is computed using Eq.15; 

4) ��$ is found using Eq.16; and 

5) The individual’s �itness, the orthogonal quadratic error �$ is calculated using Eq. 13. 

 Once the process has been completed for the population, the individuals are ranked  

according to their �itness �$, with the lowest value of � ranking �irst in the list.  

 The evolution of this population (i.e., the search for the best solution) happens through the 

application of genetic operators (elitism, selection, crossover, mutation and predation) in com-

bination with each individual’s �itness.  

 Predation culls less adapted individuals (the worst solutions), replaced by randomly created 

new individuals (Srinivas & Patnaik, 1994). With each generation, there is a �ixed chance for 

predation to occur. In this study, predation eliminates the worst individuals at a rate of 

�Z = 10%, with a probability of \Z = 30% occurring with each iteration (Sivanandam & Deepa, 

2007). 

 Elitism, selection and crossover are the operators used to create the new generation. Elitism 

places the best-�itted individual of one generation into the next, ensuring that a good solution 

will not be lost by chance during the selection of individuals to generate offspring. The (X − 1) 

other individuals of the new generation are created from two parents chosen by the roulette 

wheel method (Chambers, 2000), based on the �itness of the parents: better-adapted  

individuals have a greater number of offspring in the next generation. To do so, the sum ] of all 

errors �$ is calculated and the probability ^$ of choosing an individual is inversely proportional 

to its contribution to ]. After both parents are selected by this method, a random draw, with 

equal probability of occurrence, is conducted to determine if one, two, three, or four genes will 

come from one parent, with the complementary genes coming from the other parent. This com-

bination of genes (crossover) creates a new individual for the next generation. The process is 

repeated until the individuals necessary to complete the future generation population have 

been created. 
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 From time to time, the mutation operator is used to increase population variability.  Mutation 

is applied at a constant rate �_ = 10% of the population with a random probability of occur-

rence \_ = 20% per generation. Mutation makes it possible to escape scenarios of little varia-

bility in the population, where descendants tend to be exact replicas of parents. In such cases, 

mutation is an opportunity to generate a new and better individual from a stagnating popula-

tion (Coley, 1999). 

 The process of evolution continues through the generations until the maximum number of 

generations is reached, or the �itness value stabilizes. The individual best adapted to the envi-

ronment of this generation represents the best solution.  

  For this study, the number of generations used is 1000, to explore as many solutions as pos-

sible. This number of iterations, perhaps exaggerated, was selected due to the low computa-

tional cost to reach this level, about 10 minutes, and also because more generations did not 

result in better solutions in the tests performed. 

 The parameters of a GA are usually chosen on a pragmatic way, seeking to maintain diversity 

at a gene-level, a population-level, or even a combination of both, to obtain good-quality solu-

tions avoiding premature convergence, as well as considering the computational costs of each 

alternative (Diaz-Gomez & Hougen, 2007). The values chosen for this GA are very common in 

optimization problems and were tried in test runs. Anyhow, Reeves (1993) points out that a 

properly selected �itness function is far more important to ensure that an optimization state is 

reachable from any starting point within the search space than the chosen values for the GA 

parameters.   

4.5. First-stage model calibra�on 

The GA was then used to search for the best values for the Van Aerde model parameters, for the 

traf�ic data. Figure 4 shows the calibrated model (black line) over the raw data. The colored 

points on the graph show the data used for model calibration. The values found for the param-

eters of the Van Aerde model at the end of this initial stage were: (i) free-�low speed �= = 110 

km/h; (ii) speed at capacity �> = 89 km/h; (iii) �low rate at capacity �> = 1761 pce/h/lane; and 

(iv) jam density �? = 65 pce/km/lane.  

4.6. Second-stage model calibra�on 

To re�ine the model obtained after the previous step, a second stage, consisting of a new �ilter 

followed by a further model �itting, was employed. This �ilter, mathematically expressed as 

|��$(�$) − �$(�$)| ≥ 4 km/h, was applied to the 126 data points shown in Figure 4, eliminating 

those for which the absolute difference between the estimated speed and the observed speed 

for the correspondent density was higher than tolerance 4. For this application, a tolerance 4 =
±10 km/h was used. This second �ilter eliminated 17 observations from the set of 126 obser-

vations initially used (marked in red in Figure 4). 

 The value of tolerance 4 was chosen in a pragmatic way, similarly to that used for the selec-

tion of the GA parameters. Several values were tested, trying to balance the need for the elimi-

nation of residual noise and the need for preserving the greatest amount of information for 

model calibration. The value adopted for 4, 10 km/h, was assumed to be a good compromise 

between these two con�licting objectives.  
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Figure 4. The Van Aerde model fitted at the end of the first stage using the genetic algorithm: the gray points are the 

raw data and the crosses represent the 126 data points used for the model calibration 

 

 Figure 5 shows the result of the second-stage model calibration. The values for the parame-

ters of the Van Aerde model �itted to the 117 data points used in the second-stage calibration 

were: (i) free-�low speed �= = 110 km/h; (ii) speed at capacity �> = 89 km/h; (iii) �low rate at 

capacity �> = 1773 pce/h/lane; and (iv) jam density �? = 65 pce/km/lane. In Figure 5, the blue 

lines describe the model �itted to the raw PTMS data, whereas the red lines are the results of 

the proposed approach.  

 Little difference can be observed between the models �itted in the �irst stage and second stage 

calibration. This is due to two aspects, the �irst of which is the lack of information on traf�ic 

�lows with speed lower than 25 km/h and density greater than 40 pce/km/lane, which in�lu-

ences the estimation of jam density. The GA search is more effective when more information 

(observed values) is available because this has a greater effect on the �itness value of a solution. 

The second aspect is that this result shows that steps 1 (data aggregation) and 2 (noise �ilter) 

in the proposed approach are quite ef�icient in removing the data noise, at least for the  

particular data set.    

5. DISCUSSION OF RESULTS 

To evaluate the proposed approach, the GA stopping criterion was a very large number of gen-

erations (1000) and the calibrated model goodness of �it of was evaluated by a b metric de�ined 

as:   
                                                                         b$ = α ⋅ exp(−β ⋅ �$/γ),                                              (25) 

where �$ is the orthogonal square error of the best solution of the &-th generation, de�ined by 

Equation 13; and α, β and γ are scale factors whose values were arbitrarily chosen to be α =
 100, β =  5 and γ =  1. Equation 25 shows that 0 < b$ ≤ 100; that is, the larger the orthogonal 

quadratic error �$, the lower the value of b$ and if �$ = 0 ⇒ b$ → 100. b is a measure of the 

goodness of �it of the model as the genetic algorithm evolves. 

 Figure 6 shows the evolution of b as the number of solutions tested by the GA increases with 

each new generation. Note that each generation involves testing at least 39 solutions – more if 

predation and mutation operators are applied in that generation. 
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Figure 5. Comparison of the Van Aerde model fitted to the raw PTMS data (104,000 observations, in blue) and fitted 

with the proposed approach (in red): speed vs. density and speed vs. flow rate graphs 

 

 
Figure 6. Evolution of the calibrated model’s goodness-of-fit as a function of the number of solutions tested by the 

genetic algorithm. 
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 Fitting the Van Aerde model to the raw PTMS data results in a maximum �itting quality of 

14.2 after testing approximately 27360 solutions. The low quality of �it is explained by the great 

number of observations under low �low rates, which justi�ies the need to apply the proposed 

approach to homogenize the information over the full range of observed densities. 

 Using the proposed approach, which �its the model to �iltered data, results in b =  91.7 after 

the �irst-stage calibration, with just 5480 solutions tested. The second-stage calibration results 

in a small increase in the model’s goodness-of-�it: b = 93.1 after 26400 solutions tested. The 

small increment in the goodness of �it obtained in the �inal stage indicates that the proposed 

approach eliminates most of the noise, at least for this particular data set. In that way, one can 

consider the second stage representing a �ine tune of the calibration process. If there are avail-

able computational resources and the desire to obtain a detailed solution, it is recommended to 

carry out the second stage. In the case of a lack of computational resources, the method can be 

interrupted after the execution of the �irst stage, without signi�icant losses. 

 Because this GA starts with an initial population of 40 randomly created individuals, it is 

much more likely that fairly good solutions would appear within the initial generations, as was 

the case in this study, as the values of b for the �irst generation were 65.01, in the �irst stage, 

and 81.85, in the second stage. However, this fact does not guarantee that same �inal results will 

be veri�ied at the same number of tested solutions, but only suggests that the proposed ap-

proach can converge quickly to a good result thanks to the stochastic nature of the population 

created at the start of the algorithm. 

6. FINAL CONSIDERATIONS 

This paper has demonstrated that direct use of traf�ic data from a VLDB does not result into a 

properly calibrated traf�ic stream model, if the VLDB, like the one used in this study, includes a 

large number of repeated observations and noise. To solve these problems, the proposed ap-

proach reduces raw data into narrow density bins so that information is equally distributed 

over the range of observed densities in such way that all bins had equal weight on the �itted 

model and noise was minimized. 

 The implementation of a genetic algorithm allowed for an ef�icient way of searching for the 

search of the best solution because a GA is more likely to initiate the iterative search process 

from a superior solution and can better exploit the feasible set that satis�ies the problem con-

straints. The proposed approach can be easily adapted to other traf�ic stream models and/or 

search mechanisms.	 	 	  
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