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 ABSTRACT  
This ar-cle proposes a speed predic-on model for a highway segment in the city of Porto 

Alegre, which has daily traffic jams due to bo1lenecks. We used traffic data and 

environmental variables, such as rainfall intensity, accidents and atypical events to make 

the forecasts. Then we proposed a neural network model with an encoder-decoder 

architecture and long short-term memory (LSTM) layers, which has the characteris-c of 

establishing long-term rela-onships between the input variables, being relevant for 

applica-ons in the Transporta-on area. As addi-onal contribu-ons, we evaluated the 

quality of forecasts for different predic-on horizons and traffic regimes. We compared 

cumula-ve distribu-on func-ons (CDFs) generated using field and forecast data using a 

survival analysis method similar to the breakdown probability calcula-on. These CDFs 

represent the probability of a sudden speed drop due to the transi-on from the free-

flow to the congested regime. The methodology presented a sa-sfactory performance 

based on both criteria, making good predic-ons even in cri-cal traffic situa-ons. 

 
RESUMO   
Este ar-go tem como obje-vo propor uma modelo de previsão de velocidades para um 

trecho de rodovia na cidade de Porto Alegre, que apresenta conges-onamentos 

diariamente por conta de gargalos. Para realizar as previsões foram u-lizados dados de 

tráfego e variáveis ambientais, como intensidade de chuva, acidentes e eventos aBpicos. 

Propôs-se então um modelo de rede neural com arquitetura encoder-decoder e 

camadas long short-term memory (LSTM), que possuem a caracterís-ca de estabelecer 

relações de longa dependência temporal entre as variáveis de entrada, sendo 

per-nentes para aplicações na área de Transportes. Como contribuições adicionais, 

avaliou-se a qualidade das previsões para diferentes horizontes de predição e regimes 

de tráfego, e comparou-se a capacidade e as curvas de probabilidade de breakdown 

calculadas com dados de campo e previstos. A metodologia apresentou desempenho 

sa-sfatório com base em ambos os critérios, sendo capaz de fazer boas previsões 

mesmo em situações crí-cas de tráfego. 
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1. INTRODUCTION 

Traf�ic Engineering has received important contributions from recent technological advances 

in other areas, such as IoT (Internet of Things) and arti�icial intelligence. The intersection 

between these areas has led to the emergence of innovative �ields of study, such as Smart Cities 

and autonomous vehicles, in addition to contributing to traditional areas, such as active traf�ic 

management (ATM), in which this study �its. 
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 ATM has been around since the �irst half of the last century and traditionally proposes using 

simple algorithms and traf�ic and speed detectors to manage highway traf�ic operations. 

Although many traf�ic agencies still use these methods, ATM has received many contributions 

from data-driven approaches and seems to be increasingly merging with the concept of Smart 

Cities (Ma, Zhang and Ihler, 2020). An important feature made possible by more robust methods 

is improving traf�ic forecasts and anticipating undesired scenarios, such as congestion, 

accidents, and increased travel time. 

 In this paper, we propose using long short-term memory (LSTM) neural networks to perform 

speed predictions in the vicinity of a highway bottleneck located in the metropolitan region of 

Porto Alegre, Brazil. However, the proposed methodology aims to prioritize forecasts made 

close to the road capacity, which is the most critical moment for traf�ic management.  

The predictions consist of the expected average speed for the subsequent 5 time intervals of 5 

minutes and are based on traf�ic data, precipitation, and other possibly relevant information 

such as the day of the week and detector malfunctions. We chose this approach because LSTMs 

can retain information by creating long-term dependencies, which generally results in better 

performance than parametric methods and standard neural networks for time series 

prediction. 

 Speed forecasting can lead to good results in terms of average error since traf�ic speed is 

mostly stable due to the existence of speed limits. However, a low average error can hide large 

forecast errors at critical times, such as during peak demand periods, where traf�ic 

characteristics change quickly. Other authors rarely address this problem, so we propose 

segregating the data into �ive sets with equivalent traf�ic characteristics and analyzing the 

model error for each one individually and for each forecast horizon. 

 We used Survival Analysis by the Kaplan-Meyer method to con�irm the quality of traf�ic 

forecasts during peak periods close to road capacity. In this case, survival is related to the 

maintenance of a non-congested regime, and death is associated with the beginning of the 

transition to a congested regime. We statistically tested the similarity of cumulative distribution 

functions (CDFs) constructed with �ield and predicted data. Although the region presents 

breakdowns daily, the measured phenomenon was not treated as a breakdown because the 

detectors are located upstream of the active bottleneck. In this way, the CDFs represent the 

probability of starting the transition from the free-�low regime to the congested regime. 

 Until the conclusion of this article, the evaluation of the quality of traf�ic forecasting 

methodologies from the comparison of survival curves made with the forecasts and with �ield 

data had not been used in other researches. However, we understand that this produces a solid 

comparison, as these methods are already well established among the traf�ic engineering 

community and allow for the calculation of road capacity. Therefore, in addition to a detailed 

discussion about the model's error, we propose evaluating its effectiveness from this approach. 

2. LITERATURE REVIEW 

The development and improvement of traf�ic forecasting methods are alternatives for 

improving traf�ic management on urban highways and arterials (Vlahogianni, Karlaftis and 

Golias, 2014). Precise short-term and real-time predictions can be used as input into ATM 

algorithms, contributing to more ef�icient and responsive traf�ic management (Gu et	al., 2019). 

Traf�ic predictions are often a speci�ic application of parametric time series prediction methods 

such as naıv̈e and ARIMA. Although these methods have greater physical interpretability and 
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their solution is usually simpler (Fu, Zhang and Li, 2017), the computational capacity and the 

great availability of currently existing data allow the use of more robust models, such as neural 

networks. 

 Due to the dynamic nature of demand, non-linear non-parametric models tend to be better 

suited to capture traf�ic's spatial and temporal evolution to make good speed predictions. 

Recurrent Neural Networks (RNRs) adapt well to this type of problem, as they are a type of 

neural network capable of processing temporal sequences. However, there are different 

subtypes of RNRs with different purposes, and one of the best suited to this study is the LSTM. 

LSTMs can retain relationships with long temporal dependence, which is crucial for correctly 

interpreting traf�ic seasonality. 

 Hochreiter (1997) proposed the LSTM architecture with the main objective of modeling long 

dependencies, which is not possible with standard RNNs. Short-term traf�ic predictions can be 

de�ined as estimating the state of traf�ic for a close time in the future (Gu et	al., 2019). For this 

reason, accuracy and precision are essential aspects that must be considered. LSTM is a great 

candidate as it captures the non-linearity of traf�ic dynamics in an effective way across using 

memory blocks and thus has a superior capacity for predicting time series with long time 

dependencies (Ma et	al., 2015). 

 The ease of access to high-level neural network programming tools has enabled rapid 

assimilation of new techniques for speci�ic applications (Chollet, 2018; Géron, 2019). Because 

of this, the use of LSTM neural networks has gained space for solving traf�ic problems, which 

are highly time-dependent and have multiple variables that are related in a complex way. Fu et 

al. (2017) showed that LSTM and GRU neural networks (Gated Recurrent Units) have similar 

performance for traf�ic �low prediction and perform better when compared to the ARIMA 

method. Laptev et al. (2017) proposed an application of an LSTM neural network with an 

encoder-decoder structure to forecast the travel demand of an urban private transport 

company and capable of making predictions with high quality. A comparison between FFN 

(Feed Forward Network), CNN (Convolutional Neural Network), and LSTM was made by 

Asplund (2019), who obtained better results using the LSTM neural network to predict traf�ic 

conditions using public transport traf�ic information as input data. As stated by Vlahogianni et 

al. (2014), the interest of researchers has shifted towards more responsive prediction methods 

and models for non-recurring traf�ic conditions through the development of prediction systems 

with high algorithmic complexity. Furthermore, do Amaral (2020) compared the quality of 

velocity predictions in the same locality using different predictive models and concluded that 

an LSTM neural network produced better predictions than traditional methods such as linear 

regression, ARIMA, and regular neural networks. 

 In this article, therefore, we propose making speed predictions in a segment of a suburban 

highway where breakdowns are observed daily due to the existence of a bottleneck. To make 

these predictions, we used environmental and traf�ic data collected with inductive loops 

upstream of the bottleneck. We chose as the model a LSTM neural network with encoder-

decoder architecture to increase the predictive capabilities of LSTM neural networks pointed 

out in other studies. We assessed the quality of the predictions by comparing the error of the 

forecasts in traf�ic situations with similar characteristics and testing whether the CDF 

calculated with the predictions is equivalent to that calculated with �ield data. 
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3. METHODOLOGY 

This article proposes using an LSTM neural network to make speed predictions using traf�ic 

data from a point on a Brazilian highway. Information on precipitation, road accidents, and 

atypical events were concatenated with traf�ic data and then grouped by lane at regular 

intervals to generate the input variables that feed the neural network. As input and output 

variables, we de�ined how much time in the past and the future the proposed network would 

consider to make predictions. After training the neural network, we evaluated the results for 

different regions of the fundamental diagram and compared them with the CDF obtained 

through the �ield data. 

3.1. Study site 

The study region comprises a section of the BR-209 highway in Porto Alegre, RS, selected due 

to the high traf�ic volumes in the morning peak period. The breakdown phenomenon occurs 

regularly on weekdays due to this great demand, bottlenecks in the approaches, and the lifting 

of the mobile span of the Guaı́ba Bridge downstream of the data detection location (Calef�i et	

al., 2016; Calef�i, 2018; Zechin, Calef�i and Cybis, 2020), as shown in Figure 1. 

 

 
Figure 1. Study region 

 
3.2. Traffic and environmental data 

The data used in this article were made available by the company Triunfo Concepa, the 

concessionaire that operated the stretch of the highway. These data were collected using 

inductive loops located approximately 50 meters upstream of a fork that connects the road to 

the Guaı́ba Bridge. The data consists of two years (2016 and 2017) of disaggregated traf�ic 

counts with information on the instant of each vehicle's passage, speed, and lane. We only used 

data from the three lanes on the left since the others do not present congestion and connect the 

road to the bridge. We discarded data from days when the detectors malfunctioned, weekends, 

and days with accidents within a 5 km radius of the detectors, resulting in a useful sample of 

263 days. 

 We also used environmental data to provide the network with as much useful information as 

possible. We obtained rainfall data from a rain gauge 500 m away from the inductive loops from 

the Cemaden (National Center for Monitoring and Alerts for Natural Disasters) online portal. 

We treated it as a continuous variable since rainfall intensity was provided at intervals of up to 

10 minutes. We replicated the rainfall intensity calculated for a given instant to the previous 

data aggregation intervals used in the study until the time when another measurement was 

reported. This methodology is compatible with the data aggregation methodology used by 

Cemaden. In addition to rainfall data, we used the day of the week and bridge lifts as dummy 

variables. 
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 In this region, the breakdown phenomenon occurs daily around 7:30am with no important 

exceptions. Because of this, we de�ined 4am to 11am as a suitable period for the analysis based 

on the speed pro�ile of the highway. This covers the development of demand in the early 

morning, congestion, and the recovery of the free �low regime. 

3.3. Genera6on of inputs and outputs 

LSTM neural networks require data spaced in regular intervals to make adequate predictions, 

so we aggregated the data at 5 min intervals. Then, from the aggregated data, we created the 

variables volume, standard deviation of speed, average speed, minimum speed, median speed, 

and maximum speed per lane. We consolidated environmental variables and traf�ic variables, 

and continuous variables were normalized. 

 We de�ined the neural network inputs as 12 intervals in the past (60 min), each comprised 

of the previously created variables. For the outputs, we de�ined a forecast horizon of 25 min, 

corresponding to 5 intervals of 5 min, and the predicted variable was the average speed of the 

road. The �irst 80% of the data, in chronological order, was used for training and the remaining 

for testing. We did so to bring the study closer to an actual application, where past data would 

be used to predict unknown future events. 

3.4. LSTM neural network with encoder-decoder architecture 

Although neural networks with cells of the LSTM type have a remarkable ability to predict time 

series, relying on the ability to retain long-term information, there are network architectures 

that allow predictions to be even more accurate. In this work, we propose using the encoder-

decoder architecture, as shown in Figure 2, which has shown promising results in applications 

in the transport area (Laptev et	al., 2017). This architecture interprets the information in two 

stages: the encoder processes the data, and the decoder computes the model outputs. 

 

 
Figure 2. Encoder-decoder architecture with bidirectional LSTM layers 

 

 We inserted the input data into the neural network through the encoder. It passes through 

the bidirectional intermediate layers (Schuster and Paliwal, 1997), which make abstractions 

using LSTM cells. The computed information then follows two paths: (i) it is passed to a layer 

that generates intermediate outputs with the exclusive objective of increasing the assertiveness 

and stability of the model, and (ii) it is passed to the decoder, where it passes through 

intermediate layers before generating the outputs that are actually used as a forecast. 

4. RESULTS 

We created the proposed neural network model using the Keras (Chollet, 2015) and Tensor�low 

libraries in Python. As it is a relatively small neural network, it was possible to carry out the 
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training on the Google Colab cloud computing service, which has 12 GB of RAM memory and an 

NVIDIA Tesla P100 graphics card. 

 Neural network models have many parameters that can be adjusted to obtain better 

predictions. These parameters include the number of intermediate layers, number of neurons 

in each layer, activation functions, loss functions, optimization algorithms, and regularization 

algorithms. Although default values are used for general purposes, some parameters must 

necessarily be adjusted. These adjustments, in turn, can be made by trial and error or using 

some structured methodology. In this study, we used the hyperband technique (Li et	al., 2018), 

which has proven more time ef�icient and accurate than other techniques, such as grid search 

and random search. We also used the mean absolute error (MAE) of the decoder predictions as 

the objective function to be optimized. The optimization of the network hyperparameters took 

about 2 h. We present the optimized parameters and the respective optimal values in Table 1. 

 

Table 1 – Optimized Parameters 

Parameter Tested values Optimum value 

Bidirectional LSTM layers of the 

encoder 
0 – 3 bidirectional LSTM + 1 LSTM 2 

LSTM layers of the decoder 1 - 5 1 

Bidirectional LSTM layer neurons 32 - 512 512 

LSTM layer neurons 32 - 512 256 

Loss function 
Mean square error; absolute mean error; percent average absolute 

error 
Mean square error 

Optimizer Adam; RMSprop ; adagrad ; adadelta RMSprop 

Dropout 0.1 - 0.4 0.15 

 

In addition to these parameters, we used a variable learning rate as a function of the number of 

training epochs of the neural network. It started with a learning rate of 10-3 and was divided by 

10 every 20 training epochs. 

 Then we retrained the optimal model found with the hyperband technique for 60 epochs to 

achieve complete convergence. We used he model with the lowest MAE in the test portion for 

the following stages of the study since the use of many epochs can lead to over�itting (Chollet, 

2015; Gal and Ghahramani, 2016). 

4.1. Forecasts evalua6on 

The evaluation of the quality of traf�ic predictions on highways and arterials is not trivial since 

it does not have uniform characteristics in time and space. Traf�ic on these roads is usually 

classi�ied as free �low or congested, and traf�ic behavior in each of these situations is entirely 

different and requires different and speci�ic strategies. The transitions between these regimes 

also present peculiarities and are of particular interest for traf�ic management since they are 

linked to the operational capacity of the roads. 

 With this in mind, we proposed segregating the data into analysis regions with similar traf�ic 

characteristics from the �low-speed diagram. In this way, the error can be compared by analysis 

region and forecast horizon, as shown in Figure 3. We created the proposed regions empirically 

according to the following criteria: (R1) free �low; (R2) drop in speed due to proximity to 

capacity; (R3) transition to the congested state; (R4) congestion; and (R5) free �low recovery. 

 The MAE of the forecasts was 5.40 km/h globally. However, we observed that the error differs 

in order of magnitude when comparing different traf�ic regions and forecast horizons: 
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Figure 3. Regions of analysis and MAE by region and forecast horizon 

 

• R1: In this region, vehicles travel at speeds limited by the legal limits of the road. Because 

of this, the MAE is expected to be low, basically resulting from different individual 

desired speed choices (Galvan, Zechin and Cybis, 2019). A low MAE was achieved by the 

proposed model, with little error increase even for the maximum forecast horizon; 

• R2: this was the region where the model made the most accurate predictions, which is 

interesting since it precedes the beginning of the transition to the congested state. In this 

region, there is greater speed homogeneity resulting from the increase in traf�ic �low. 

However, the speed pro�ile does not follow a stable pattern like the R1 region. Good 

predictions, especially for longer horizons, indicate that the model is capable of 

predicting the onset of congestion; 

• R3: This region refers to the transition from the free �low to the congested state. In this 

region, a sudden drop in speed is observed, and the calculated average velocity depends 

signi�icantly on the instant within the aggregation interval (5min in this study) in which 

this phenomenon occurred. Because of this, there is great speed variability in this region, 

and it is natural that larger errors are observed proportionally to the size of the chosen 

data aggregation interval. Thus, in this region, it is expected that the model is able to 

capture the rapid downward trend even with larger errors than in the other regions. 

Based on this, we understand that the errors found are compatible with expectations; 

• R4: vehicles travel in a stop-and-go motion in this region, and the speed variability is 

more signi�icant. This happens mainly because data was collected with inductive loops, 

which measure the instantaneous speed of vehicles. The model errors are smaller for 

shorter prediction horizons and are close to the errors measured in the R1 region, but 

increase for larger horizons. There is less interest in obtaining highly accurate 

predictions in this region since the possibilities of acting on traf�ic are lower during 

congestion due to the high density and low speed of vehicles; 

• R5: Although predictions during congestion are not very interesting, the possibility of 

predicting free �low recovery is interesting, and this is done in the R5 region. However, 

this is the region where the model incurred the most signi�icant errors. The probability 

that the congestion will end depends on the volume upstream of the bottleneck 

approaches decreasing, which cannot be measured with just one detector, especially 

during congestion. Because of this, we expected forecasts in this region to be reactive, 

respond to measured velocity variations, and have a low anticipation capacity. We stated 

that this occurred, since the error is high and increases as the forecast horizons increase. 
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 To support the interpretations above, we propose evaluating how the error behaves as a 

function of time. Figure 4 shows the speed pro�ile used in the test portion of the neural network 

along with the predictions made, the error of each prediction, and the volume used as weight 

during training. To evaluate the quality of predictions in the future, we present the predictions 

made for the �irst (5 min) and �ifth (25 min) predicted interval. As the test portion is large, we 

show a sample of 200 predicted sequences, where some important phenomena can be 

observed. 

 

 
Figure 4. Speed predictions over time. The volumes are scaled to correspond to the vertical axis. Red signals indicate 

the start of a new morning. 

 

 Although distant in time, we observe that the predictions made for 5 and 25 min in the future 

are similar in terms of error and have good adherence to the speeds measured in the �ield. The 

error is noticeably smaller in the regions close to the transition from the free �low to the 

congested regime since the volume was used as weight during the training process, increasing 

the relative importance of these intervals. This is a highly desired effect since good forecasts 

close to capacity are necessary to anticipate the beginning of the transition to the congested 

regime. In free-�low moments, speed variability is greater since the volume is low, and most 

vehicles travel unimpeded. It is interesting to note that the model converged to linear 

predictions in these situations since the main trend is stable and the weights are smaller 

because they are proportional to the volume. In the congested regime, both forecast horizons 

have larger and similar errors due to the speed �luctuations that occur during the stop-and-go 

motion. The biggest difference between the predicted intervals happens in the transition from 

the congested to the free �low regime; in this case, the speed forecasts seem to react to changes 

on the road without anticipation of speed recovery. This is clear by looking at the delay between 

forecasts and �ield measurements, which is even more signi�icant in the 25 min forecast. As 

expected, the predictions regarding the recovery of free �low are more erratic than the others 

since they are highly dependent on the �low of vehicles upstream of the bottleneck under 

analysis. As this information does not exist in this study, it is natural that the observed error is 

greater. 

4.2. Valida6on using the predic6ons to calculate CDFs 

The analyses indicate that the proposed model performs satisfactorily for the speed prediction 

task, especially in regions of particular interest for active traf�ic management.  
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Model validation was performed by calculating and statistically comparing CDFs constructed 

with �ield and predicted data. These curves were estimated using the breakdown probability 

calculation methodology suggested by Brilon et al. (2005) to provide robustness to the model 

validation (Han and Ahn, 2018). Then we statistically tested the hypothesis that the CDFs 

generated with measured and predicted speeds in the �ield are different. In this study, we did 

not use the term breakdown to refer to the measured phenomenon due to the unfavorable 

position of the detectors. However, the survival analysis does not make this distinction.  

It is suf�icient that we compute the observed phenomenon the same way using predicted and 

�ield data for the statistical analysis to be valid. 

 The methodology for breakdown probability calculation used by Brilon et al. (2005) is widely 

recognized for its effectiveness and simplicity, having also been used in several studies that 

followed it (Andrade and Setti, 2014; Elefteriadou et al., 2011, 2014). The original methodology 

de�ines a speed threshold, so that the interval preceding a drop in speed that exceeds this limit 

is considered a breakdown. This interval is censored (received a 1 marker) and the intervals 

preceding it receive a 0 marker. We discarded intervals following the breakdown. Then we 

sorted the markers and their respective volumes from the entire database by volume and 

applied them to the non-parametric Kaplan-Meier model (Kaplan and Meier, 1958) to generate 

breakdown probability curves as a function of volume. In this study, we considered that the 

beginning of the transition to the congested regime is analogous to the breakdown phenomenon 

treated in these studies. We adapted the methodology by Brilon et al. (2005), adding as a 

criterion for identifying a censored interval the need for 2 consecutive intervals to be below the 

established speed threshold. We did so to reduce the likelihood of identifying false positives. 

 Although the breakdown probability curve provides a stochastic view of the road's capacity, 

traf�ic managers tend to prefer to use a deterministic value for it. Shojaat et al. (2016) proposed 

the sustainable �low index (SFI) to meet this demand without giving up the information offered 

by the probability distribution. This metric originates from the concept of risk, de�ined as the 

multiplication of the probability of an adverse event occurring and the damage caused by it. In 

the context of traf�ic engineering, and more precisely of the occurrence of a breakdown , the SFI 

represents the volume that transits through a road and is calculated by the product between 

the volume and the complementary probability of the occurrence of a breakdown. 

 The capacity, therefore, is obtained by maximizing the SFI. As an example, the SFI curves, the 

CDFs made with the predictions, and the speeds measured in the �ield are shown in Figure 5. 

We used the last predicted interval (25 min in the future) and a speed threshold of 65 km/h. 

 Then we investigated the quality of the predictions applied to this methodology by varying 

the threshold velocity to identify the highest threshold velocity that (i) generates statistically 

identical probability curves and (ii) produces similar capabilities. The hypothesis that the 

generated curves are identical was tested by �itting the Cox survival model (Cox., 1972) to the 

volume data, from the binary marker of early transition to the congested regime calculated 

previously and an accessory variable that indicates whether the data refers to a prediction or a 

�ield measurement. We tested the signi�icance of the accessory variable in the model through 

the likelihood ratio test, so that p-values greater than an assigned acceptance limit α= 0.05 do 

not allow rejecting the null hypothesis that the curves are identical with 95% con�idence, which 

is desirable in this study. Figure 6 shows the p-values obtained in comparing the curves 

generated for different speed thresholds and each forecast horizon. Note that we only created 

4 curves, since we considered making two predictions lower than the established speed 
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threshold an identi�ication criterion for the beginning of the transition to the congested regime. 

We also present the calculated capacities. 

 

 
Figure 5. CDFs of the beginning of the transition to the congested regime and SFI for speed threshold = 65 km/h with  

25 min prediction data 

 

 Speeds greater than 70 km/h generally produce p-values below the limit α, where the null 

hypothesis that the distributions are identical is rejected. However, we note that the threshold 

speed from which the p-values become greater than this threshold decreases as the forecast 

horizon increases. We understand that this occurs because the forecasts are more imprecise the 

longer the forecast horizon, and the assertiveness of the forecasts increases when there are 

clearer signs that the speed drop has started and lower speeds are measured. 

 Visual inspection in Figure 6 shows a convergence between the calculated capacity values for 

values close to 65 km/h, where there is a maximum absolute difference below 200 veh/h.  

As we observe convergence between capacities for this speed threshold and all p-values are 

greater than 0.05, we understand that the neural network well represents both the beginning 

of the transition to the congested regime and capacity. 

 

  
Figure 6. p-value of the accessory variable in the Cox survival model and capacity for different limit speeds 

 

 In this application, the speed threshold of 65 km/h could be suggested to characterize the 

beginning of the transition to the congested regime from speeds predicted by the real-time 

model in practical applications. However, it is noteworthy that this value is suggested based on 

the data of this speci�ic case study, so that the ideal speed threshold may differ in other locations 

due to geometric and behavioral speci�icities and peculiarities in the demand pro�ile. 
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5. CONCLUSIONS 

In this article, we proposed using an LSTM neural network with encoder-decoder architecture 

to perform speed predictions of a road segment where breakdowns are observed daily due to a 

bottleneck. We used rainfall and traf�ic data collected with inductive loops, including road 

accidents and lifting information from the mobile span of a bridge, to aggregate as much 

information relevant to the neural network as possible. We evaluated the forecast results for 

different traf�ic states to detail the model's quality. We also validated the results by applying 

predictions in the calculation of CDFs that represent the probability of the beginning of the 

transition to the congested regime. 

 With an MAE of 5.40 km/h, the forecast errors obtained in the regions of greatest interest 

showed satisfactory results for all predicted intervals, but it is noted that the error increases 

with the forecast horizon. The use of volumes as a sample weight allowed the reduction of 

prediction errors in situations where traf�ic is close to capacity. Because of this, we observed 

convergence between the probability curves calculated with �ield and predicted data, indicating 

that the model can also make good predictions at critical moments for traf�ic. 

 Practical applications of the proposed methodology must consider the peculiarities of the 

used data. The hyperparameters found during the neural network optimization process may 

differ depending on factors such as the amount of data, the number of variables created, data 

aggregation, and traf�ic characteristics in the studied region. The suitability of the methodology 

for the chosen region can also be veri�ied through the generation and statistical comparison of 

CDFs . 

 We suggest for future work using data from detectors located closer to the bottlenecks, so 

that the breakdown characterization can be performed with greater precision, and to assess 

whether the location of the detectors signi�icantly in�luences the results. The use of data from 

multiple sections of the segment, especially upstream, would also be interesting, as it would 

allow the model to consider the local traf�ic state and the volume of vehicles that will pass 

through the section in the future. Traf�ic has a stochastic nature, so the probabilistic prediction 

of speeds may be a more appropriate tool (Fortunato et al., 2017; Kendall and Gal, 2017). 

Making predictions using adaptations of LSTM neural networks compatible with disaggregated 

traf�ic data can also contribute to maximizing the use of information (Neil, Pfeiffer and Liu, 

2016). Neural network models are often considered black-box models. However, recent 

advances indicate ways to create visualizations for humans (Arras et	al., 2019). Crossing traf�ic 

data with other databases can add even more information to the network, such as the use of 

traf�ic images, Bluetooth data, telephony data, and integrations with mobility applications, as 

well as a previous study of the signi�icance of the variables, to reduce the number of variables 

used and provide only relevant information. Other models of neural networks, such as 

transformers networks, also seem promising for solving traf�ic problems (Wu et al., 2020) but 

still demand more studies. 
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