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 ABSTRACT  

The defini)on of the Resilient Modulus (MR) of subgrade soils is essen)al for the reliable 

implementa)on of mechanis)c-empirical pavement design. The MR of the soil is measured 

through repeated triaxial load tests which require expensive equipment and complex 

analyses. This reinforces the need to develop accurate sta)s)cal models for the predic)on of 

the MR of the subgrade soil to be used for paving highways, especially in developing 

countries, such as Brazil, where financial resources are limited. The present study used 

ar)ficial neural networks (ANNs) to create a model for the predic)on of the MR of subgrade 

soils based on a visual-manual classifica)on. For this, the results of MR tests conducted on 

samples of different soils from northeastern Brazil were used to develop an ANNs model for 

the predic)on of the MR. The results demonstrate that ANNs can predict reliably the MR of 

soils, with a good degree of correla)on in comparison with the laboratory test data. These 

findings support the use of the ANN model as a cost-effec)ve approach for the preliminary 

evalua)on of subgrade soils for highway pavement design in northeastern Brazil. 

 

RESUMO   

A determinação do Módulo de Resiliência (MR) dos solos dos subleitos é essencial para a 

implementação segura de um método mecanís)co-empírico de dimensionamento de 

pavimentos. O MR de solos é medido por meio de ensaios realizados em equipamentos 

triaxiais de carga repe)da, os quais demandam alto custo de inves)mento e análises 

complexas. Diante disso, existe a necessidade do desenvolvimento de modelos estaDs)cos 

para a previsão do MR de solos para uso em pavimentação, especialmente em países em 

desenvolvimento, como o Brasil, onde os recursos financeiros são limitados. Este estudo usou 

Redes Neurais Ar)ficiais (RNAs) para desenvolver um modelo de predição do MR de solos do 

subleito, baseado na classificação tá)l-visual de solos. Para tanto, os resultados dos ensaios 

de MR de diferentes solos do nordeste brasileiro foram usados para calibrar os modelos 

neurais de previsão do MR. Os resultados demonstram que as RNAs podem prever de forma 

confiável o MR de solos, com um bom grau de correlação, quando comparados aos dados de 

laboratório. Esses achados sugerem beneGcios do uso de modelos neurais como uma 

abordagem custo-efe)va para a avaliação preliminar de solos de subleito para projetos de 

pavimentação de rodovias no nordeste do Brasil. 
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1. INTRODUCTION 

In the design of both �lexible and rigid pavements, it is important to de�ine the Resilient Modulus 
(MR) to determine the quality of the materials of the different pavement layers, including the 
subgrade (Nazzal and Tatari, 2013; Ribeiro, Da Silva and Barroso, 2015). Sadrossadat, Ali and 
Saeedeh (2016) and Erzin and Turkoz (2016) concluded that the MR is determined primarily 
by the loading conditions or stress state, and the physical properties of the materials. 
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 The MR can be determined in the laboratory by repeated triaxial load tests, which consist of 
the application of a repeated deviator stress, with constant cell pressure, to measure the 
resilient axial strain. The MR (Equation 1) as the ratio between the repeated deviator stress (σd) 
and the recoverable axial strain (��). In Brazil, this procedure is regulated by the National 
Transport Department (DNIT) norm 134/2018-ME. 

 �� =  	

��   (1) 

where: MR:   the resilient modulus; 

   σd = σ1–σ3: the deviator stress; 

   σ1:    major stress; 

   σ3:    con�ining stress; 

   εr:    recoverable strain. 

 However, determining the MR in the laboratory is a costly process because it requires a large 
number of samples, quali�ied personnel, and in particular, the acquisition of expensive 
laboratory equipment (Rahim and George, 2005), which is priced at around U$ 150,000 in 
Brazil. Given this, a number of studies have developed models for the prediction of the MR, 
based on simple laboratory and �ield tests, which are processed using statistical procedures and 
arti�icial intelligence, such as arti�icial neural networks. (Patel and Desai, 2010; Zumrawi, 2012; 
Sadrossadat, Ali and Saeedeh, 2016; Li and Wang 2019; Souza, Ribeiro and Da Silva, 2020). 

 A number of studies (George, 2004; Kim, 2004; Zeghal and Khogali, 2005; Malla and Joshi, 
2007; Archilla, Ooi and Sandefur, 2007; Amiri, Nazarianand and Fernando, 2009; Park et al., 
2013; Sadrossadat, Ali and Ghorbani, 2018; Tseng and Lytton, 1989; Turk, Logar and Majes, 
2001; Gunaydin, Gokoglu and Fener 2010; Alawi and Rajab, 2013; Sabat, 2013; Erzin and 
Turkoz, 2016; Ribeiro, Da Silva and Barroso, 2018; Tenpe and Patel, 2018) have demonstrated 
the potential of using soil property indices as explanatory variables to estimate the MR and 
other geotechnical mechanical characteristics of soils to be used for paving highways. These 
studies have shown that the value of the MR is affected primarily by the stress states (σd and σ3) 
and basic soil characteristics, such as the percentage of gravel, sand, and �ine substrates (silt 
and clay), the liquid limit (LL), plasticity index (PI), optimum water content (wopt), and 
maximum dry density (γdmax). 

 Erzin and Turkoz (2016), Zhang and Yu (2016), Ribeiro, Da Silva and Barroso (2018) and 
Tenpe and Patel (2018) all demonstrated that it is very dif�icult to de�ine the relationships 
between the MR and soil properties by linear regression procedures. Given this, arti�icial 
intelligence systems, such as Arti�icial Neural Networks (ANNs), have been widely used to solve 
statistical questions in pavement and geotechnical engineering (Rakesh et al., 2006; Singh, 
Zaman and Commuri, 2012; Nazzal and Tatari, 2013; Zhang and Yu, 2016, Sadrossadat, Ali and 
Ghorbani, 2018; Gong et al., 2018). 

 The Arti�icial Neural Network (ANN) approach attempts to simulate human brain function in 
a simpli�ied manner, in a computer system. This approach is based on the use of parallel systems 
composed of simple processing units (neurons) that calculate speci�ic (nonlinear) 
mathematical functions. These units are arranged in one or more layers which are interlinked 
through a large number of connections that are mostly unidirectional (Hecht-Nielsen, 1990; 
Zurada, 1992; Bredenhann and van de Ven, 2004; Haykin, 2007). 

 The ANN most used to model parameters for pavement design is the Multilayer Perceptron 
(MLP) network (see Erzin, Rao and Singh, 2008; Dantas Neto et al., 2014; Zhang and Yu, 2016, 
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Ribeiro, Da Silva and Barroso, 2018), which is made up of multiple layers of neurons arranged 
in three types: the input layer, the hidden layers, and the output layer. The input layer receives 
the external stimuli, while the hidden layers amplify the capacity of the ANN to capture the 
behavior of the most complex properties of the phenomenon being modeled, while the output 
layer presents the responses to the stimuli compiled by the ANN. 

 The MLP thus consists of multiple layers of neurons that simulate the function of biological 
neurons (Bayrak, 2005; Nazzal and Tatari, 2013; Sitton, Zeinali and Story, 2017). The inputs are 
multiplied by a synaptic weight which is, initially, random. These weighted inputs are then 
added and increased to modify the output of the neuron. The output value is normalized 
through the application of an activation function. Figure 1 shows a nonlinear mathematical 
model of an arti�icial neuron. Neuron k can be described by equations 2, 3 and 4. 

 

 
Figure 1. Nonlinear artificial neuron model 

  
  uk = � wki xi 

m

i=1
 

    vk= uk� bk (3) 
 yk= f!vk" (4) 
where: xi:   the ANN input; 

   wki:   synaptic weights; 

   bk:    biasterm; 

   uk:   linear combination of input signals; 

   f(vk):    activation function; 

   yk:   neuron output. 

 Bredenhann and van de Ven (2004) used an MLP network to estimate the elastic modulus of 
�lexible pavement layers, while Bayrak, Alperand and Halil (2005) used ANNs to model the 
resilient behavior of the materials in the layers of �lexible pavements in Iowa. Rakesh et al. 
(2006) measured pavement surface de�lections using ANNs, the resilient modulus, and the 
thickness of the layers. 

 Park, Kweon and Lee (2009) developed a model to estimate the MR of the subgrade and sub-
base layer in �lexible pavements using ANN to process the associated soil index properties and 
stress states. Nazzal and Tatari (2013) evaluated the use of genetic algorithms and ANNs to 
maximize the performance of the predictive models of the subgrade resilient modulus using 
basic soil properties. Zhang and Yu (2016) used a backpropagation type of model to predict the 
resilient modulus of the subgrade of highways in Harbin, China. 

 Similarly, Hanittinan (2007) used ANNs to predict the resilient modulus of three cohesive 
subgrade soils from Ohio. Johari, Javadi and Habibagahi (2011) combined ANNs and genetic 

(2) 
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algorithms to model the results of triaxial tests using explanatory data, such as the soil density, 
axial deformation, the degree of saturation, deviator stress, and the con�inement strength. Kim, 
Yangand and Jeong (2014) used property indices and stress states to estimate the MR of nine 
different types of subgrade soil in the American state of Georgia using an ANN as modeling tool. 

 In Brazil, there are few studies to estimate the MR, and the biggest part of it does not have 
good accuracy to preview this parameter. Thus, the present study evaluated the potential for 
the prediction of the MR of subgrade soils in northeastern Brazil, based on the visual-manual 
classi�ication of the soil and ANN. The decision to use a visual-manual classi�ication based on 
the particle size, and plasticity of the soils was based on the relative simplicity and viability of 
the data collection procedures, as established by ASTM D2488/2000, and because the literature 
search identi�ied no studies that have used the visual-manual classi�ication of the properties of 
the soils applied to pavement area. 

2. METHODS 

2.1. Database 

A total of 1308 datasets collected in northeastern Brazil were used in this study. This database 
was generated from the previous studies of Benevides (2000), Chaves (2000), Souza Júnior 
(2006), Bastos (2013), Ribeiro (2016), and Maia (2016).The variables available in this database 
include the liquid limit (LL), plasticity index (PI), percentage of the soil particles of different 
sizes (passing through sieves with #1”, #3/8”, #4, #10, #40, and #200 meshes), the AASHTO 
classi�ication, maximum dry density (γdmax), optimum moisture content (wopt), California 
Bearing Ratio (CBR), con�ining stress (σ3), deviator stress (σd), the MR, and the visual-manual 
classi�ication. The data were obtained using standard Brazilian procedures for the particle size 
classi�ication (NBR-7181/1984), the Proctor compaction test (NBR 7182/2016), plasticity 
(NBR-7180/2016), liquid limits (NBR-6459/2016), the determination of the CBR (NBR-
9895/2016), and resilient modulus (DNIT134/2018 - ME). The ASTM D2488 (2000) was 
adopted for the visual-manual classi�ication. 

 In this paper, the input data for the prediction of the MR were obtained from the laboratory 
resilient modulus test and the visual-manual classi�ication of the soils. This kind of classi�ication 
is simplest and determines empirically the texture of the material by inferring the presence of 
particles of different sizes. Seven variables were selected as the effective parameters for the 
modeling of the MR of the subgrade soil: gravel, sand, silt, clay, plasticity, con�ining (σ3) and 
deviator stress (σd). The input parameters were chosen based on the relative simplicity of the 
measurement procedures. Rigassi (1985), Minke (2006), Pinto (2006) and Pinheiro (2018), 
consider the visual-manual identi�ication of soil properties to be a simple, but reliable tool 
which provides a rapid, preliminary diagnosis of the soil properties without the need for 
specialized equipment. 

2.2. Standardiza�on of the data 

As ANN modeling requires quantitative data, the non-numerical datasets were converted to 
numerical values and standardized, following Rahim and George (2005), Nazzal and Tatari 
(2013), and Ribeiro, Da Silva and Barroso (2015). For this, the plasticity of the soil was 
attributed one of three scores: 1 (nonplastic), 2 (poor plasticity), and 3 (plastic). In the case of 
the grain size fractions, in the case of the grain size fractions, it is necessary for the neural 
network to differentiate which materials are part of the soil sample (gravel, sand, silt, and clay) 
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and which order of predominance, so that the algorithm has the perception of 100% of the 
sample. Thus, it was decided to standardize the numerical values of the granulometric fractions 
as follows, the predominant fraction being scored as 0.60, while the secondary component is 
assigned a score of 0.20, the third component, a score of 0.15, and the additional component, a 
score of 0.05. When there are only three components, however, the scores are 0.60, 0.25, and 
0.15, respectively, and with two components, they are 0.60 and 0.40. When only one component 
exists, it is assigned a score of 1 (see Table 1 for examples). This way, in every case, the sum of 
the fractions was 1, that is, 100%. 

 
Table 1 – Examples of the numeration of the qualitative predictor variables 

Visual-manual classifica�on 
Numeration  

Gravel Sand Silt Clay Plasticity 

silty-sandy CLAY with gravel, plas)c 0.05 0.15 0.20 0.60 3 

silty-gravely SAND, nonplas)c 0.15 0.60 0.25 0.00 1 

sandy-clayey SILT, low plas)city 0.00 0.25 0.60 0.15 2 

 

2.3. Modeling the Resilient Modulus with ANNs 

The arti�icial neural network tool of Matlab 2015 was used to model the MR. This tool is widely 
used to model speci�ic phenomena in the �ield of engineering. One of the most valuable 
properties of an ANN is its capacity to learn from the examples it is presented with, and thus 
improve its performance through a process of continuous training. The network is trained by 
modifying all the existing synaptic weights and thresholds, based on the experience obtained 
on the phenomenon under analysis. This is typically available in a dataset which contains pairs 
of known inputs and outputs (Ribeiro, Da Silva and Barroso, 2015; Sadrossadat, Ali and 
Saeedeh, 2016; Ribeiro, Da Silva e Barroso, 2018). 

 The majority of the learning algorithms use three types of datasets (the training, validation, 
and testing datasets) to avoid over�itting. The training and validation datasets are used in the 
supervised learning phase of the ANN, while the testing dataset is used to test the knowledge 
level of the network. Once trained, it is possible to use the synaptic weights of the ANN to 
calculate an output based on novel input data. For this, it is only necessary to apply the weights 
exported from the model in equations 2, 3, and 4. 

 In the present study the 1308 datasets were divided randomly into three groups, with 70% 
of the data vectors being assigned to the training process, 15% being used as validation data 
(necessary to implement the stop rule of the learning algorithm), and 15% being used to test 
the models (Haykin, 2007; Ribeiro, Da Silva and Barroso, 2018; Souza, Ribeiro and Da Silva, 
2020). Figure 2 shows the sequence of steps in the conventional MR laboratory test and in the 
procedure proposed here, based on the ANN analysis of the visual-manual classi�ication of the 
soil. A number of different algorithms with varying parameters (i.e., the number of intermediate 
layers, the number of neurons per layer, learning rates, the momentum term, and the number 
of training periods) were also tested. 

 The Levenberg-Marquardt (LM) algorithm, which is a modi�ied form of the error 
backpropagation algorithm, was selected to initiate the tests. This algorithm was selected for 
the initial testing based on the recommendations of Beale et al. (2010). The LM algorithm is a 
function that updates the weights and values of the biases based on their optimization.  
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This algorithm is widely considered to be one of the most rapid backpropagation training 
algorithms, although it does require more computer memory than some others (Zhang and Yu, 
2016; Ribeiro, Da Silva and Barroso, 2018; Tenpe and Patel, 2018). 

 

  
Figure 2. Flowchart of the soil analysis procedures (upper – triaxial load testing, lower – visual-manual soil classification, 

and Artificial Neural Network) 

3. RESULTS AND DISCUSSION 

3.1. Overview of the data 

These variables were chosed based on the relative simplicity of the data collection procedures, 
as de�ined by ASTM D2488/2000. An overview of the variables included in the database is 
presented in Table 2 with the aim of considering the quality of distributions of variables.  
Overall, the present study included soils of nine AASHTO classes (A-1-a, A-1-b, A-3, A-2-4, A-2-
6, A-4, A-5, A-6, and A-7-5), with 1308 variants of the MR. 

 
Table 2 – Descriptive statistics of the input data 

Variable Mean Median Mode Standard Deviation 

Gravel 0.267 0.050 0.050 0.266 

Sand 0.392 0.600 0.600 0.214 

Silt 0.219 0.200 0.200 0.124 

Clay 0.120 0.150 0.150 0.0781 

Plasticity 4.568 4.000 0. 000 4.601 

σ3 (MPa) 0.068 0.051 0.051 0.039 

σd (MPa) 0.137 0.103 0.103 0.102 

MR(MPa) 542.38 509.00 635.00 372.91 

 

 Haykin (2007) noted that it is important to verify the degree of correlation between the input 
and output variables of the ANN and concluded that the input variables with a correlation of at 
least 0.3 tend to be the most ef�icient for the prediction of the output variables in ANN modeling. 
The correlations found between the different variables (Table 3) indicate that parameters, such 
as gravel, sand, clay, σ3, and σd) are the most relevant input variables for the MR prediction, 
while silt and plasticity have the least predictive potential for the MR. 

 Haykin (2007) also recommended that variables that have a strong correlation can be 
combined into a unique value or one of them can be eliminated during the modeling. Rahim and 
George (2005) noti�ied that for a reliable regression model, the input data should be such that 
there should not be a strong correlation amongst them. Input variables, if they were highly 
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correlated, would weaken the prediction capability of the model, a problem referred to as 
multicollinearity. This problem could result in unstable error coef�icients and can seriously limit 
the use of models for inference, such as statistical or arti�icial intelligence models. 

 Exploring the correlations between exploratory variables in Table 3, it is possible to note that 
exist multicollinearity, higher than 0.7, among gravel/sand and σ3/σd. Then, in the modeling 
process, based on the variable selection criterion (trial and error) to result in the highest 
possible R and the lowest possible MSE, models were trained in which sand and gravel,  
and σ3 and σd were not put together as input variables. However, these models did not show 
good performances when compared to models that used all input data as explanatory variables 
of the MR. 

 
Table 3 – Correlation matrix of the variables analyzed in the present study 

 Gravel Sand Silt Clay Plasticity σ3 σd MR 

Gravel 1.000        

Sand -0.759 1.000       

Silt -0.420 -0.222 1.000      

Clay -0.665 0.199 0.456 1.000     

Plasticity -0.104 -0.046 0.276 0.042 1.000    

σ3 (MPa) 0.009 0.001 -0.017 -0.008 -0.005 1.000   

σd (MPa) 0.013 0.003 -0.025 -0.012 -0.007 0.772 1.000  

MR (MPa) 0.762 -0.549 -0.321 -0.585 -0.006 0.495 0.528 1.000 

 

3.2. Development of ANN models to predict the MR 

The LM algorithm produced the best results for the prediction of the expected MR as the output 
of the ANN, derived from the processing of the dataset. Beale, Hagan and Demuth (2010), Zhang 
and Yu (2016), and Tenpe and Patel (2018) recommended the LM as a rapid training algorithm 
for moderately-sized datasets, as well as having good potential for generalizations, in most 
cases. The linear coef�icient of correlation (R) and the mean squared error (MSE) were used to 
evaluate the performance of the neural models. Equations 5 and 6 show the performance 
measures R and MSE, respectively. 

 R = # !hi- h& i" !ti- t( i"  n
i=1

*# !hi- h& i"²  n
i=1 # !ti- t( i"  n

i=1 ²
 (5) 

 MSE = # !hi- ti"²  n
i=1

n  (6) 

where: hi:  observed output values; 

   ti:  predicted output values; 

   h(i:  means of the observed outputs; 

   t ̅i:  means of the predicted outputs; 

   n:  number of samples. 

 Approximately 2.000 different topologies were modeled to determine the best MR prediction 
model, which had a 7:15:1 con�iguration, consisting of an input layer of seven neurons,  
an intermediate (hidden) layer of 15 neurons, and an output layer of one neuron. In this model, 
the intermediate layer was based on an activation function of the sigmoidal tangent type, while 
the output layer used the identity function. 

 The number of neurons in the intermediate layer of this model was exactly that indicated by 
Hecht-Nelson (1987), who recommends having 20 � 1 neurons in this layer, where 0 is the 
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number of variables in the input layer. This also corroborates the studies of Hecht-Nelson 
(1989), Cybenko (1989), and Bounds et al. (1988), who all concluded that a single intermediate 
layer was suf�icient to solve a range of engineering problems. Figure 3 shows the architecture 
of the optimum topology obtained in the present study. 

 

 
 Figure 3. Architecture of the Artificial Neural Network that was most effective for the prediction of the MR  

 

 The accuracy of neural models is generally evaluated through the analysis of a test dataset. 
These ANN outputs are compared with the actual data presented to the ANN only after training 
and validation. Based on this test analysis, the best-performing model had an R = 0.9597 and an 
MSE = 0.021. This model was thus considered, statistically, to have the optimal adjustment, as 
shown in in Figures 4–6, which demonstrate the adjustment of the experimental MR values to 
the MR values obtained by the ANN modeling of the training (Figure 4), validation (Figure 5), 
and test datasets (Figure 6), with their respective measures of performance (R and MSE).The 
proximity of the R and MSE values of the training, validation, and test datasets indicate that 
over�itting was avoided, which implies that the model has good potential for generalization as 
a procedure for the prediction of the resilient modulus. 

 The performance coef�icients recorded for this model were of the same order of magnitude 
as those recorded by Rahim (2005), Hanittinan (2007), Kayadelen et al. (2009), Nazzal and 
Tatari (2013) and Tenpe and Patel (2018), which indicates that the input variables selected for 
this model were suf�icient to estimate the MR. This model is not only adequate, but it also avoids 
the need for costly laboratory testing for the acquisition of the input variables in cases when the 
�inancial resources are short, such as in low volume road projects, given that it requires only the 
data from the visual-manual soil classi�ication. 

 Pal and Deswal (2014), Sadrossadat, Ali and Saeedeh (2016) and Sadrossadat, Ali and 
Ghorbani (2018) concluded that the results of statistical analyses are often dif�icult to 
understand or interpret. Given theseconclusionsit is interesting to note that the analysis of the 
residual errors and discrepancies may provide a valuable and precise means to better assess 
the accuracy and the validity of the model. 

 Figure 7 shows two curves representing the predicted and experimental MR values for the 
test dataset ranging from the smallest to the largest. This analysis indicates clearly that the 
values estimated by the model and those produced in the laboratory follow the same general 
tendency, albeit with a certain degree of difference. Figure 7 also shows the minimum and 
maximum discrepancies between measured and predicted MR for the test dataset. 
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 Figure 4. Plot of the predicted vs. experimental MR values for the training dataset  

 

 
 Figure 5. Plot of the predicted vs. experimental MR values for the validation dataset  

 

 
 Figure 6. Plot of the predicted vs. experimental MR values for the test dataset  

 

 
Figure 7. Predicted and experimental MR values for test dataset, organized in ascending order 
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 In order, when evaluating the ability of this neural model to predict the subgrade MR values 
Figure 7 shows that generally, it has a good tendency of prediction. In addition, it is possible to 
observe that the values of resilient modulus less than 200 MPa measured in the laboratory are 
over-predicted and the most part of the laboratory-measured resilient modulus values bigger 
than 200 MPa are underestimated. However, this model has better correlations for estimating 
the resilient modulus than those models predict the resilient modulus indirectly from universal 
constitutive model coef�icients (k1, k2, and k3), such as Pezo (1993), and Yau and Von Quintus 
(2002), both models adopted by NCHRP (2004), where these coef�icients are estimated on the 
basis of basic physical properties of soils. 

 
Table 4 – The weighting and biases of the MR output predicted by the ANN model 

Weight from input layer to hidden layer 
Bias from 

input layer to 

hidden layer 

Weight from 

hidden layer 

to output 

layer 

Bias from 

hidden layer 

to output 

layer Gravel Sand Silt Clay Plasticity σ3 σd 

0.70 -1.25 -1,06 0.25 1.43 -0.03 -0.90 -2.10 0.41 

0.31 

-0.52 0.62 1.16 -0.79 0.84 0.74 -0.26 1.80 -0.19 

0.38 0.88 -1.00 -0.01 -0.04 1.08 0.46 -1.80 0.30 

0.41 0.84 -0.59 0.24 -0.07 -0.14 -1.27 -1.10 -0.99 

-0,25 -0.70 1.15 -1.37 0.56 0.20 0.60 0.81 -1.28 

0.81 -0.53 2.09 0.41 0.53 -2.30 -0.20 -0.85 -0.29 

-0.46 -0.67 -0.71 1.92 0.57 0.33 -0.14 0.54 -1.52 

-0.99 -0.65 1.19 0.41 0.08 1.08 0.90 -0.57 0.19 

1.30 0.07 -0.94 1.61 0.31 -0.58 0.38 0.10 -0.77 

-0.51 -0.72 -0.72 1.40 -0.33 -1.19 -0.51 -0.52 -0.24 

-0.53 0.63 -0.75 0.24 0.59 0.11 -2.02 -1.69 1.68 

1.51 -1.79 0.35 0.89 1.42 -0.04 -0.06 1.24 1.27 

-0.82 1.03 -1.09 0.41 0.82 0.33 -2.58 -2.47 -1.04 

-0.59 -0.51 -0.35 1.23 -0.11 -0.62 0.98 -2.09 0.47 

0.35 -0.57 0.46 0.97 -1.29 -0.19 0.00 1.85 -1.06 

 

 

 These �indings indicate that the ANN model developed in the present study can be 
generalized for the analysis of subgrade soils throughout northeastern Brazil. To enable the 
implementation of the neural model in future studies, the weights and biases of the 
intermediate and output layers of the best neural modelare provided in Table 4. Moreover, with 
these weights, biases, and equations 2, 3, and 4 is possible to calculate the MR for any sample of 
soil that provides the ASTM visual-manual classi�ication using a spreadsheet. 

4. CONCLUSIONS 

The models developed in this study obtained a 0.9597 accuracy rate and a value of 0.0212 for 
the MSE for the for estimating the MR of subgrade soils, based on the topologies composed of 
seven input variables and an intermediate layer of 15 neurons, with output layer of 1 neurons 
(7:15:1). In general, the results of the present study indicate that ANN are capable of providing 
a good estimate of the values of the resilient modulus of subgrade soils, based on data derived 
from a visual-manual classi�ication. 

 The model presented here could thus be used to predict the MR of subgrade soils, providing 
an easily-implemented, cost-effective, and reliable alternative to determine the MR.  
The input data for this analysis are easily acquired from the visual-manual classi�ication which 
can help to minimize the time and �inancial resources required for the preliminary analysis of 
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subgrade soils for highway pavement design when the laboratory tests are not able to be 
executed, in particular for low-volume roads. 
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Disponıv́el em: <https://repositorio.ufc.br/handle/riufc/18958 > (Acesso em: 23/05/2022). 

Ribeiro, A. J. A.; C. A. U. Da Silva and S. H. A. Barroso (2018) Metodologia de baixo custo para mapeamento geotécnico aplicado 
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