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ABSTRACT 
Landing and takeoff procedures are the prior most critical phases of a flight, once they 
are up to several factors that play a fundamental role in its performance, these include 
the pilot´s skill, weather states and skid resistance. In this context, the friction 
coefficient represents an important parameter for operational safety in terms of tire-
pavement adherence. In that fashion, this research aims to offer confident prediction 
models supported by Artificial Neural Networks as a way of quantifying friction 
coefficient based on 3-6 meters from the axis of runways (RWY) through different types 
of equipment in virtue of assisting the aerodrome operator with respect of safety 
procedural requirements, in addition to verifying the influence of grooving upon friction 
coefficient performance. The models developed have achieved some satisfactory 
results, given the complexity of the problem, emphasizing the significance of further 
improvements, even though these models might settle on ways that help guide and 
control RWY safety procedures. 

RESUMO 
As operações de pouso e decolagem representam as fases mais críticas de um voo, uma 
vez serem suscetíveis a diversos fatores que intervêm em seu desempenho, tais como 
a habilidade do piloto, as condições climáticas e de aderência pneu-pavimento. Nesse 
contexto, o coeficiente de atrito representa um parâmetro importante para a segurança 
operacional no quesito aderência pneu-pavimento. Dessa forma, esta pesquisa visa 
desenvolver modelos de previsão utilizando Redes Neurais Artificiais para o coeficiente 
de atrito medido a 3 e a 6 metros do eixo de pistas de pouso e decolagem (PPD) por 
meio de diferentes tipos de equipamento com a finalidade de auxiliar o operador de 
aeródromo quanto à garantia da segurança operacional, além de verificar a influência 
do grooving no desempenho do coeficiente de atrito. Os modelos desenvolvidos 
apresentaram resultados satisfatórios dada a complexidade do problema, 
demonstrando que, apesar de necessitar de aprimoramentos futuros, eles podem 
contribuir com a segurança das operações nas PPD. 
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1. INTRODUCTION 

In the airport context, runways (RWY) become more requested as the flow of passengers 
and cargo grows, as well as the emergence of new operations with larger and heavier 
aircraft that contribute to the premature wear and tear of airport pavements. This 
increase may imply a greater number of accidents and aeronautical incidents, which have 
a greater occurrence and safety risk during ground operations (ICAO, 2019). 

Shahin (2005) states that the relevance of preserving the texture of airport pavements is 
obvious since their poor condition can contribute to the occurrence of an incident or air 
accident. This is due, in many cases, to deficiencies in the coating, mainly with regard to the 
tire-pavement adherence parameters, namely, the friction coefficient and the macrotexture, 
which are also affected by the accumulation of rubber from the aircraft tires. 

In addition to grip conditions, adversity in weather can result in contamination of the 
RWY by water, causing a negative impact on braking, acceleration and aircraft stability. 
The presence of water on the pavement surface is mainly attributed to its surface and 
drainage characteristics (ICAO, 2019). 

It is understood, therefore, that the evaluation of tire-pavement adherence parameters 
is essential to ensure the safety of landing and takeoff operations. According to ANAC 
(2019), the number of parameter measurements is directly proportional to the number of 
operations at the RWY, and, for this reason, the RWY remains closed or partially blocked, 
restricting operations at the airport. Thus, the application of mathematical models 
capable of predicting the adherence conditions of the RWY coating is justified. 

In view of the above, the technique of Artificial Neural Networks was used in order to 
develop models for predicting the friction coefficient obtained through reports of 
measurements in the field, carried out at the two Brazilian airports, between 2012 and 2018. 

2. ASPECTS THAT INFLUENCE THE FRICTION COEFFICIENT 

According to Fonseca (1990), the friction coefficient represents the effect of the macrotexture 
associated with the microtexture. The action of the surface texture on the friction coefficient of 
the RWY is subject to the speed developed by the aircraft and the effectiveness of the pavement 
drainage (Kazda and Caves, 2007). Among the factors that influence the friction coefficient 
stand out the type of pavement, surface texture, traffic and time, removal of rubber 
accumulation and climatic conditions. Aps (2006) found that the draining coating has a better 
performance for the coefficient of longitudinal friction and greater stability of friction in view of 
the development of speed. This is a consequence of the draining effect of surface water through 
the interconnected voids. However, the lowest values of longitudinal friction coefficient were 
evidenced in Asphaltic Concrete (AC), which is the most influenced by the increase in speed. 

McDaniel et al. (2010) analyzed the behavior of the friction coefficient in certain 
segments of North American highways from the opening of the lanes to traffic up to a 5-
years period, using the DFT equipment, at a speed of 20 km/h. Surfaces with Stone Matrix 
Asphalt (SMA) and Porous Friction Course showed stable and similar friction coefficient 
levels, however, significantly higher than the AC, even though the latter is in an acceptable 
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condition. No consistent downward trend was perceived; after the action of the traffic, the 
stretch with AC presented the lowest friction values among the types of coatings analyzed. 

Costa et al. (2017) investigated the variation of the friction coefficient in different 
paving techniques, using the British Pendulum equipment. It is observed that the AC with 
the addition of rubber had the lowest British Pendulum Number (BPN), presenting lower 
values than the AC, while the pavement with the presence of grooving obtained the 
highest BPN, that is, better skid resistance. However, when the rubbering component is 
included, there is a reduction of about one third of the BPN value. This is due to the process 
of filling the transverse grooves with rubber waste from vehicles tires wear. 

Skerritt (1993) understands that the friction in new pavements comes mainly from the 
macrotexture, as the aggregates are still covered with an asphalt film. However, as 
vehicles travel along the road, this layer disappears, and the aggregates are exposed to 
polishing. In a given time, all surface aggregates wear down until they reach an 
equilibrium condition. This state is reached after passing 1 to 5 million passenger vehicles 
or after a period of two years. In fact, the geometry of the lane and the intensity of vehicle 
traffic, especially commercial vehicles, exert a direct influence on the polishing of the 
aggregates. Therefore, roads with high traffic volume demand more caution with friction 
(Chelliah et al., 2002). 

Chen et al. (2008) analyzed the performance of the friction coefficient in relation to the 
effect of rubber accumulation in a RWY at Kaohsiung International Airport, in Taiwan. It 
was found that after the initial 200 m, with the beginning of the predominant headland, it 
is already possible to observe the presence of small rubber deposits. However, it is 
between the stretches of 500 m and 1,000 m that the greatest accumulations of rubber 
are observed and, consequently, the lowest measures of friction coefficient. 

Still, Chen et al. (2008) also found that the number of landings is directly proportional to the 
thickness of the rubber deposit in the RWY, where each landing contributes about 0.05 mm to 
this measurement. This material, when kept in the coating, is subjected to a compaction process 
due to the weight and heat of the aircraft during landing. As a result, a layer of rubber is formed 
that occupies the surface of the RWY, making tire-pavement adherence difficult and reducing 
the friction coefficient in areas with more rubber accumulation. 

Flintsch et al. (2005) understand that climate-related factors, such as precipitation, 
temperature, humidity, wind speed, among others, are partially responsible for seasonal 
variations in friction properties at the tire-pavement interface. In this case, there are 
different patterns of seasonal variations in levels of skid resistance; they become more 
noticeable during the summer months, due to the higher temperatures observed in that 
season (Masad et al., 2009). 

For Masad et al. (2009), friction levels have the lowest values during the summer 
period. This is due to the greater accumulation of small particles and debris on the 
pavement surface, which accelerate the polishing of the pavement surface and, 
consequently, reduce skid resistance. Thus, there is a variation of about 30% of the friction 
between a minimum in the summer and a peak during the winter (Chelliah et al., 2002). 

Anupam et al. (2013) verified the behavior of the friction coefficient regarding the 
temperature of the pavement, the air and the air inside the tire, in three different types of 
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asphalt mixtures, namely: draining pavement, SMA and thin coating. The results indicate that 
temperature is inversely proportional to friction, regardless of the type of surface. In addition, 
the authors developed friction prediction models, using temperature data, through 
regressions whose Coefficients of Determination (R2) resulted between 0.81 and 0.94. 

3. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) are computational techniques that portray a mathematical 
model inspired by the neural structure of intelligent organisms, such as the human brain, and 
that gain knowledge through experience. In this method, simple processing units are employed 
that make up distributed parallel systems, called nodes, whose objective is to calculate certain 
mathematical functions, generally nonlinear. These units are structured in one or more layers, 
which are interconnected by a significant number of connections (Haykin, 2009). 

Haykin (2009) defines a neuron as an information processing unit essential for the 
functioning of a neural network, that is, the model of a neuron shapes the premise for the 
design of a large set of neural networks (Figure 1). Thus, three primary components of the 
neural model are identified, namely: set of synapses or connecting links, sum element and 
activation function. In the first, each one is defined by its own weight or strength. Notably, 
multiply a signal 𝑥𝑥𝑥𝑥 connected to neuron 𝑘𝑘 at the input of synapse 𝑥𝑥 by the synaptic weight 
𝑤𝑤𝑘𝑘𝑥𝑥. The importance of recording the way in which the subscripts of the synaptic weight 
are written is highlighted. The neuron in focus is represented by the first index in 𝑤𝑤𝑘𝑘𝑥𝑥, 
while the end of the synapse input with its respective weight is portrayed by the second. 
The synaptic weight of an artificial neuron can be found in a range that contains both 
positive and negative values, as opposed to the weight of a synapse in the brain. 

 
Figure 1. Nonlinear model of a neuron k. 
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The sum element, in turn, performs a sum of the input signals, which are weighted by 
the respective synaptic weights of the neuron, constituting a linear combination. Finally, 
the activation function, also known as the squashing function, determines the amplitude 
of the output of a neuron, in order to limit the allowable amplitude range of the output 
signal to some finite value (Haykin, 2009). 

The normalized amplitude range of a neuron's output typically ranges from [0, 1] or [−1, 1]. 
In addition, the presence of a bias is used externally and has the purpose of changing the 
activation function of the network, increasing or decreasing it, depending on whether it is 
positive or negative, respectively (Haykin, 2009). Abiodun et al. (2018) describe that the bias 
neurons are defined, in any case, as equal to one, in addition to having a similarity with the linear 
regression interceptor (𝑦𝑦 =  𝑎𝑎𝑥𝑥 +  𝑏𝑏), in which 𝑎𝑎 and 𝑏𝑏 represent, in that order, the coefficient 
angle of the linear function 𝑥𝑥 and the interceptor. 

The Multilayer Perceptron (MLP) consists of a type of neural network similar to the 
simple Perceptron, but with an undetermined number of neurons present in a set of 
layers, namely: input layer, one or more hidden or intermediate layers and output layer. 
In this way, the input signals traverse the network, layer by layer, in a positive direction, 
that is, from input to output, a movement called feedforward (Bocanegra, 2002). 

After the feedforward, the algorithm performs a contrast between the expected value 
and the value reached by the model, in order to identify errors in the output. Then, the 
network checks the contribution of each neuron present in the previous intermediate 
layer to the output error. This process continues until the model reaches the input layer. 

According to Géron (2017), the MLP makes a prediction in the input-output direction 
for each training example through the backpropagation algorithm. In this way, this 
algorithm runs through each layer in reverse (output-input) to measure the error and 
verify the contribution of this error for each connection. Finally, the algorithm adjusts the 
connection weights in order to reduce the error. 

When approaching the use of ANN in Transportation Engineering, several authors used this 
technique to predict parameters related to the condition of tire-pavement adherence, as well as 
to indicate the need or not for maintenance on the highways and runways (Flintsch et al., 1996; 
Fwa et al., 1997; Bosurgi and Trifirò, 2005; Thube, 2012; Domitrović et al., 2018; Najafi et al., 
2019; Hossain et al., 2019; Ribeiro et al., 2018; Yao et al., 2019; Quariguasi et al., 2021). 

4. METHODS 

The research method adopted in this study is divided into five stages, namely: choice of 
aerodrome, data collection, data handling, model development, and analysis and 
discussion of results. 

The chosen aerodromes were two Brazilian international airports, both with flexible 
pavements in the three RWY (one for Airport A and two for Airport B). The first was 
selected because of the amount of data provided by the National Civil Aviation Authority 
(ANAC) and its relevance for air transport in the Northeast region of Brazil in the year 
2021 (ANAC, 2021). In turn, the second was defined due to the existence of grooving in 
one of its RWY and because it is important for air movement in the country. 
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Variables with precedent in past models applied to highways and airports were used, 
namely: periodic maintenance (rubber removal), coating age, ambient temperature, 
relative air humidity and traffic (Fwa et al., 1997; Anupam et al., 2013; Santos et al., 2014; 
Oliveira, 2017; Susanna et al., 2017; Yao et al., 2019; Quariguasi et al., 2021). In addition, it 
is noteworthy that, in this work, the existence or not of grooving in the RWY was considered, 
and that data from the friction coefficient measured by different equipment were used. 

Subsequently, data were collected, namely: (i) Friction coefficient measured at 3 m and 
6 m on both sides – right/left – of the runway axis; (ii) Longitudinal distance for measuring 
the friction coefficient in meters; (iii) Side – right/left – of the friction coefficient 
measurement; (iv) Equipment used to measure the friction coefficient; (v) Date of removal 
of rubber accumulation; (vi) RWY coating age in months; (vii) Ambient temperature in 
degrees Celsius; (viii) Relative humidity in percentage; (ix) Existence of grooving; (x) 
Number of operations (landings and takeoffs). 

The data relating to the friction coefficient are as follows: measurement at 3 m and 6 
m, measurement distance, measurement side and the equipment used in the test. They 
were obtained through technical reports provided by ANAC, totaling 22 reports for 
Airport B and 41 for Airport A, carried out between 2012 and 2018. In addition to these 
elements, the reports also included the date on which the last rubber accumulation was 
removed and the existence or not of grooving. 

The age of the RWY coating was obtained through the Brazilian Airport Infrastructure 
Company (Infraero), ANAC and the aerodrome operator of Airport B. For Airport A, the 
temperature and relative humidity of the air were obtained both through the Airspace 
Control Institute (ICEA) and through the reports of measurement of the friction coefficient. 
For Airport B, only these reports were considered as sources for these two variables. 

The number of RWY operations was obtained from the websites of ANAC and the airport 
operator. This information was taken in three different ways, with the aim of representing 
different scenarios and improving the performance of the models proposed in this work. 
Thus, the number of RWY operations was analyzed: (i) Between the measurements of the 
friction coefficient; (ii) By year; (iii) Between rubber buildup removal procedures. 

As indicated in the reports adopted in this paper, the friction coefficient referring to 
Airport A was measured using the GripTester and Skiddometer equipment, both at 65 
km/h, whose acceleration distance was 100 m from the predominant threshold. For 
Airport B, the Mu-Meter equipment was used at the same speed, however, with an 
acceleration distance of 150 m from the predominant threshold. 

The rubber accumulation removal operation was considered only for the first third of 
the RWY, that is, the initial 900 m and 1,100 m of the predominant threshold for Airports 
A and B, respectively. This was considered because this segment is the aircraft touchdown 
zone, where rubber is deposited, especially during landings. 

Following the ordering of the data, data pre-processing was performed via Standard 
Scaler, with the variables mean 0 and variance equal to 1. Pre-processing is a commonly 
used step in Machine Learning evaluators, aiming to standardize the distributed data for the 
model not to present unsatisfactory results and for the variables to present a value close to 
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each other, that is, with the same magnitude. Thus, all data are converged to a number close 
to 0 and have the same order of variation, being contained in the intervals [0,1] or [−1,1]. 

Subsequently, the data were structured in an 𝐌𝐌 𝑚𝑚 × 𝑛𝑛 matrix for insertion in the 
algorithm. In this matrix, 𝑚𝑚 represents the number of occurrences distributed in lines and 
𝑛𝑛 the number of variables separated in columns, including the targets, the friction 
coefficient measured at 3 m and 6 m, in the last column. Each friction coefficient value (𝑦𝑦1 
and 𝑦𝑦2) was associated with its respective row of variables (𝑥𝑥i). 

In the last stage, there is the development of MLP-type ANN models through the Python 
programming language and its libraries Scikit-learn and Tensorflow. The cross-validation 
technique was applied, in which the data set was segmented, without repetition and 
randomly, in a proportion of 80% for training and 20% for testing. R2 was used to verify the 
success rate of the algorithm. To verify the error, the Mean Squared Error (MSE) and the Mean 
Absolute Error (MAE) were used. 

5. RESULTS AND DISCUSSIONS 

5.1. Results of models AT3 and AT6 

The models called Model AT3 and Model AT6, which have the friction coefficient at 3 m 
and 6 m from the RWY axis as a target variable, were developed using 3,136 instances and 
11 classes resulting from a total of 63 measurement reports from Airports A and B. 
Initially, the following variables were used: measurement distance, measurement side, 
rubber removal, grooving, equipment used, pavement age, temperature, humidity, 
number of operations between friction measurements, number of operations between 
rubber removals, and number of annual operations. 

The architecture defined for the models consisted of four hidden layers with 32, 64, 64 
and 64 neurons for AT3 and four hidden layers with 64 neurons each for AT6. Both models 
used the rectified linear activation function and the RMSprop weight optimizer. 

Thus, both models were processed five times in order to obtain the average of the results. 
It is noteworthy that, for each processing, different but close results were obtained. Table 1 
shows the test results of the AT3 and AT6 models, using R2, MSE and MAE. 

Table 1: Results of the AT3 and AT6 models 

Runs 
AT3 AT6 

R2 MSE MAE R2 MSE MAE 
1 0.697 0.003 0.043 0.647 0.003 0.044 
2 0.699 0.003 0.042 0.649 0.003 0.040 
3 0.698 0.003 0.041 0.687 0.003 0.038 
4 0.706 0.003 0.043 0.674 0.003 0.038 
5 0.717 0.003 0.042 0.700 0.002 0.036 
Average 0.703 0.003 0.042 0.671 0.003 0.039  

It is verified, through Table 1, that the R2 of the models resulted in values around 0.70, 
which represents a satisfactory value given the complexity of the problem. The MSE 
resulted in 0.003 and the MAE was around 0.040 for both models. It is also noticed that 
the R2 and the MAE presented, respectively, an increasing and decreasing value, according 
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to the processing order for both the AT3 and AT6 models. However, this improvement 
observed in the result has no correlation with the order or amount of processing. 

It is noteworthy that the results of the models are different at each processing due to 
the cross-validation procedure, which consists of randomly dividing the data set into k 
exclusive partitions. In this case, a subset is used for testing and the rest for training for 
each partition, alternately, that is, for each processing, the model is processed and tested 
with a different partition of the data. Figure 2 shows the scatter plot between the observed 
and estimated friction coefficient in the test phase of the AT3 and AT6 models. 

 
Figure 2. AT3 and AT6 model test scatter plot. 

It can be seen from Figure 2 that the results of the models were satisfactory in 
generalizing the problem. This is because the values are close to the diagonal that 
represents the trend line, showing a positive correlation between the observed and the 
estimated friction coefficient. Despite the dispersion of some points, it can be seen that, in 
the best processing result, the AT3 and AT6 models exhibited an R2 of 0.72 and 0.70, 
respectively. Regarding the worst result, the models presented an R2 of 0.70 and 0.65. 

5.2. Results of models AT3 and AT6 with change of variables 

The analysis of the results resulting from the alteration of the input variables of Models 
AT3 and AT6, in which two modifications were performed with the objective of improving 
accuracy, is presented in this item. It is noteworthy that the architectures of the models 
were not changed, that is, four hidden layers with 32, 64, 64 and 64 neurons for AT3 and 
four hidden layers with 64 neurons each for AT6. 

In the first modification, the following variables were removed: pavement age, 
operations between rubber removals, and annual operations. In the second change, the 
grooving variable was removed, in addition to those removed first. The pavement age 
variable was removed due to its low correlation coefficient with the friction coefficient at 
3 m and 6 m, presenting values of 0.10 and 0.07, respectively. Furthermore, the data 
showed high dispersion and a coefficient of variation of 0.74, which may reduce the 
accuracy of the model. It should be noted that this variation was due to the average RWY 
resurfacing interval of 120 months. 
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As for the variables related to the number of operations, only one of the three variables 
was used in the first processing in order to reduce the redundancy of this type of data. The 
two variables removed were chosen because they have a lower coefficient correlation 
with the friction coefficient. The grooving variable was dispensed due to its smaller 
number of instances in relation to the data set. 

Two distinct results were obtained for each model relative to the first and second 
changes made. That said, four new models were named for better interpretation, namely: 
Models AT3-1, AT3-2, AT6-1, AT6-2. It is assumed that the altered models presented 
similar results to the first processing (Table 2). 

Table 2: Results of AT3 model with change of variables 

Runs 
AT3-1 (1st change) AT3-2 (2nd change) 

R2 MSE MAE R2 MSE MAE 
1 0.697 0.003 0.044 0.680 0.003 0.045 
2 0.714 0.003 0.041 0.663 0.004 0.046 
3 0.707 0.003 0.041 0.680 0.004 0.045 
4 0.715 0.004 0.046 0.692 0.003 0.043 
5 0.704 0.003 0.042 0.708 0.003 0.043 
Average 0.707 0.003 0.043 0.685 0.003 0.044 
AT3 Results 0.703 0.003 0.042 - - -  

The AT3-1 and AT3-2 models showed an average R2 of 0.707 and 0.685, respectively, in 
addition to an MSE of 0.003 and a MAE of 0.044. In comparison with the R2 of 0.703, of the 
AT3 model, it is verified that the removal of the variables pavement age, operations between 
rubber removals and annual operations improved the performance of the model, while the 
elimination of the grooving variable reduced the accuracy, as illustrated in Table 2. 

Models AT6-1 and AT6-2 presented an average R2 of 0.619 and 0.633 and a MAE of 0.043 
and 0.040, respectively, in addition to an MSE of 0.003 in both (Table 3). The results of the 
two changes made were lower than those obtained in the AT6 model, that is, the model 
obtained better accuracy and generalization using all available data. The R2 had a reduction 
from 0.671 to 0.619 in the first modification and to 0.633 in the second modification, in which 
the removal of the grooving variable increased the accuracy of the model in relation to the 
first modification. This may be associated with the smaller amount of data that has the 
grooving variable in relation to the dataset. 

Table 3: Results of AT6 model with change of variables 

Runs 
AT6-1 (1st change) AT6-2 (2nd change) 

R2 MSE MAE R2 MSE MAE 
1 0.563 0.004 0.045 0.599 0.003 0.043 
2 0.603 0.004 0.048 0.623 0.003 0.041 
3 0.634 0.003 0.044 0.648 0.003 0.040 
4 0.642 0.003 0.040 0.648 0.003 0.038 
5 0.651 0.003 0.038 0.646 0.003 0.038 
Average 0.619 0.003 0.043 0.633 0.003 0.040  
AT6 Results 0.671 0.003 0.039 - - - 
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Although the changes in the variables did not promote a significant improvement in the 
accuracy of the models, the number of variables and data needed to obtain a result close to those 
of the AT3 and AT6 models, which encompass all the variables, was reduced. In this way, the 
effort required to collect and store data was reduced, as well as the financial expenditure for 
these activities. In a possible application of these models, cost reduction for the aerodrome 
operator is an important factor for the implementation and maintenance of such systems. 

In addition, carrying out measurements of the friction coefficient of RWY represents a 
financial, personnel and logistical effort for the aerodrome operator, requiring the RWY to 
be closed for such activities. Therefore, the application of models that can reduce the 
number of measurements carried out on the runway and, consequently, the costs linked to 
these activities, is useful for aerodrome operators in relation to the management of airport 
pavements and for ANAC in terms of inspection and regulation of national civic aviation. 

Finally, it can be understood that there was an improvement in the models, since the 
number of variables was reduced, maintaining an accuracy close to that observed in the 
models according to all available data. Indeed, the reduction of the database without 
harming the accuracy represents an improvement in the models. 

5.3. Grooving influence 

The statistical analysis of the relationship between grooving and the friction coefficient 
measured at 3 m and 6 m from the RWY axis is addressed in this item. Initially, descriptive 
statistics were performed on the data, dividing the occurrences by the distance from the 
axis and the presence of grooving (Table 4). 

Table 4: Descriptive statistics of the friction coefficient in relation to grooving 

Variable Data Mean 
Standard  
Deviation 

Coefficient of 
Variation Minimum Maximum 

Friction coefficient 
at 3 m 

All 0.71 0.10 0.14 0.38 0.99 
No grooving 0.73 0.10 0.14 0.38 0.99 
With grooving 0.65 0.06 0.10 0.48 0.83 

Friction coefficient 
at 6 m 

All 0.75 0.09 0.12 0.47 0.99 
No grooving 0.76 0.09 0.11 0.47 0.99 
With grooving 0.69 0.07 0.10 0.50 0.87  

It can be seen that the average friction coefficient observed in measurements with 
grooving showed lower averages compared to measurements without the device (Table 4). 
In addition, the maximum and minimum values of the friction coefficient were verified in 
the measurements without grooving. It should be noted that the measurements of the entire 
length of the RWY of the two aerodromes analyzed were used and that only the runway 
11L/29R has grooving. 

Through an analysis of the distribution of occurrences, it can be seen that the coefficients of 
friction measured at 3 m and 6 m are higher in areas without grooving (Figures 3 and 4). It is also 
noted that the measurements taken at 6 m are larger than the measurements at 3 m. This may be 
associated with the number of operations per size of aircraft; large aircraft influence more at 6 m 
from the RWY axis due to the width of their landing gear and wear out that region of the RWY 
more when compared to small and medium-sized aircraft that operate in the 3 m range. 
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Figure 3. Scatter plots of friction coefficient according to measurement distance in RWY without grooving. 

 
Figure 4. Scatter plots of friction coefficient according to measurement distance in RWY with grooving. 

The fact that the areas with grooving have the lowest friction coefficient measures may 
be related to the aircraft touchdown zone, located in the 1st third of the RWY and where 
takeoff and landing operations are performed. These areas tend to have more rubber build-
up that tends to fill in the existing grooves and, in turn, a reduction in the friction coefficient. 

It can be understood that the effectiveness of grooving decreases as operations in the 
RWY are performed and the residue is deposited in the grooves. Therefore, the rubber 
removal procedure is important precisely to return the friction coefficient to its initial 
value. However, these interventions may not be carried out at the right time, so as not to 
remove the rubber accumulation and reduce the friction coefficient measurements. 

Finally, the installation of grooving is recommended to improve the friction coefficient 
of the PPD. However, the functionality of the device is directly related to carrying out 
maintenance by removing the rubber in an appropriate period. 

6. CONCLUSIONS 

This research developed and improved prediction models for the friction coefficient 
measured by different equipment at 3 m and 6 m away from the runway (RWY) axis, using 
Artificial Neural Networks (ANN). Thus, the models developed showed satisfactory 
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results, with a hit rate of around 0.70, which validate their possibility of use to obtain 
estimates of the friction coefficient. 

In addition, the results of the models showed the viability of using friction coefficient 
data measured by different equipment in ANN models. Although the models need 
improvement to develop their accuracy, it is understood that they can have better results 
from a quantitatively larger database and with a greater number of aerodromes. 

The results obtained resulting from the alterations, with x variables, were similar to 
the initial processing, in which all y variables were used. The accuracy of the altered 
models was lower, but close to that of the initial model. Although the accuracy was not 
increased by changing the variables, it can be considered an adequate result, since a result 
similar to that of the first processing was achieved, using a smaller amount of data. It is 
emphasized that the need for a smaller database represents an improvement of the 
models, in view of the limitation in obtaining data for carrying out this research. 

Regarding the grooving analysis, it was found that the measurements that had this device 
had lower averages in relation to the others. It was verified that this result may be associated 
with the location of the grooving in the RWY, that is, the touchdown zones of the aircraft tend 
to have a lower friction coefficient due to the accumulation of rubber. Moreover, failure to 
remove this accumulation in an appropriate period may have also contributed to a greater 
amount of accumulated rubber and, consequently, a lower friction coefficient. 

Regarding the limitations of this research, the models were developed only with data from 
the Brazilian international airports and, therefore, may not be appropriate for other airfields 
with different characteristics. In addition to that, only one RWY showed grooving, that is, 
there was a greater amount of data for measurements without the device. The prediction 
models were developed for the friction coefficient measured at 3 m and 6 m away from the 
RWY axis with the GripTester, Skiddometer and Mu-Meter equipment at 65 km/h such that 
the models could present inconsistency in different scenarios of these circumstances. Still, the 
use of variables that extrapolate the values used for training the models can also cause errors. 

Finally, it is evident that this research contributes to the increase of operational safety 
in Brazilian RWY and with the pavements management system by the aerodrome 
operator regarding the condition of tire-pavement adherence. Furthermore, this paper 
can also help in ANAC's inspection and regulation activities. 

ACKNOWLEDGEMENTS 
This work was carried out with the support of the Coordination for the Improvement of Higher Education Personnel – 
Brazil (CAPES) – Financing Code 001. To the Department of Airport Infrastructure of the National Civil Aviation 
Authority for providing the data. 

REFERENCES 
Abiodun, O.I.; A. Jantan; A.E. Omolara et al. (2018) State-of-the-art in artificial neural network applications: a survey. 

Heliyon, v. 4, n. 11, p. E00938. DOI: 10.1016/j.heliyon.2018.e00938.  
ANAC (2019) RBAC 153: Aeródromos - Operação, Manutenção e Resposta à Emergência. Emenda nº 4. Brasília: 

Agência Nacional de Aviação Civil. 
ANAC (2021) Consulta Interativa – Indicadores do Mercado de Transporte Aéreo. Brasília: Agência Nacional de 

Aviação Civil. 

http://dx.doi.org/10.1016/j.heliyon.2018.e00938
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30519653&dopt=Abstract


Ribeiro and Oliveira Volume 31 | Número 2 | 2023  

 

TRANSPORTES | ISSN: 2237-1346 13 

Anupam, K.; S.K. Srirangam; A. Scarpas et al. (2013) Influence of temperature on tire-pavement friction analyses. 
Transportation Research Record, v. 2369, n. 1, p. 114-124. DOI: 10.3141/2369-13. 

Aps, M. (2006) Classificação da Aderência Pneu-Pavimento Pelo Índice Combinado IFI – International Friction Index para 
Revestimentos Asfálticos. Thesis (Ph.D.). Escola Politécnica, Universidade de São Paulo, São Paulo, SP. DOI: 
10.11606/T.3.2006.tde-11122006-144825  

Bocanegra, C.W.R. (2002) Procedimentos para Tornar Mais Efetivo o Uso das Redes Neurais Artificiais em Planejamento 
de Transportes. Dissertation (master of science). Escola de Engenharia de São Carlos, Universidade de São Paulo, 
São Carlos, SP. DOI: 10.11606/D.18.2002.tde-06032002-131951. 

Bosurgi, G. and F. Trifirò (2005) A model based on artificial neural networks and genetic algorithms for pavement 
maintenance management. International Journal of Pavement Engineering, v. 6, n. 3, p. 201-209. DOI: 
10.1080/10298430500195432. 

Chelliah, T.; P. Stephanos; T. Smith et al. (2002) Developing a design policy to improve pavement surface 
characteristics. In Transportation Research Board (ed.) Pavement Evaluation Conference. Location: Transportation 
Research Board, p. 1-19. 

Chen, J.S.; C.C. Huang; C.H. Chen et al. (2008) Effect of rubber deposits on runway pavement friction characteristics. 
Transportation Research Record, v. 2068, n. 1, p. 119-125. DOI: 10.3141/2068-13. 

Costa, S.L.; V.T.F. Castelo Branco and E.F. Freitas (2017) Avaliação da aderência pneu-pavimento para diferentes tipos de 
pavimentos utilizando o International Friction Index (IFI). In Associação Nacional de Pesquisa e Ensino em Transporte 
(org.) XXXI Congresso da Associação Nacional de Pesquisa e Ensino em Transporte. Recife: ANPET, p. 1-12. 

Domitrovic, J.; T. Rukavina and H. Dragovan (2018) Application of an artificial neural network in pavement 
management system. Technical Gazette, v. 25, p. 466-473. DOI: 10.17559/TV-20150608121810. 

Flintsch, G.W.; J.P. Zaniewski and J. Delton (1996) Artificial neural network for selecting pavement rehabilitation 
projects. Transportation Research Record, v. 1524, n. 1, p. 185-193. DOI: 10.1177/0361198196152400122. 

Flintsch, G.W.; Y. Luo and I.L. Al-Qadi (2005) Analysis of the effect of pavement temperature on the frictional 
properties of flexible pavement surfaces. In Transportation Research Board (org.) 84th Transportation Research 
Board Annual Meeting. Washington, D.C.: Transportation Research Board. 

Fonseca, O.A. (1990) Manutenção de Pavimentos de Aeroportos. Brasília: Diretoria de Engenharia da 
Aeronáutica/Divisão de Estudos e Projetos de Infraestrutura/Ministério da Aeronáutica. 

Fwa, T.F.; W.T. Chan and C.T. Lim (1997) Decision framework for pavement friction management of airport runways. 
Journal of Transportation Engineering, v. 123, n. 6, p. 429-435. DOI: 10.1061/(ASCE)0733-947X(1997)123:6(429). 

Géron, A. (2017) Hands-on Machine Learning with Scikit-learn & TensorFlow. Sebastopol: O’Reilly. 
Haykin, S. (2009) Neural Networks and Learning Machines (3rd ed.). Upper Saddle River, NJ: Pearson. 
Hossain, M.I.; L.S.P. Gopisetti and M.S. Miah (2019) International roughness index prediction of flexible pavements 

using neural networks. Journal of Transportation Engineering, Part B: Pavements, v. 145, n. 1, p. 04018058. DOI: 
10.1061/JPEODX.0000088. 

ICAO (2019) State of Global Aviation Safety: Safety Report. Montreal: International Civil Aviation Organization. 
Kazda, A. and R.E. Caves (2007) Airport Design and Operation (2nd ed). New York: Elsevier Science. 
Masad, E.; A. Rezaei; A. Chowdhury et al. (2009) Predicting Asphalt Mixture Skid Resistance Based on Aggregate 

Characteristics. Austin: Texas Transportation Institute. Available at: 
<https://static.tti.tamu.edu/tti.tamu.edu/documents/0-5627-1.pdf > (accessed 03/17/2023). 

McDaniel, R.S.; K.J. Kowalski; A. Shah et al. (2010) Long Term Performance of a Porous Friction Course. West Lafayette: 
Taylor & Francis Online. 

Najafi, S.; G.W. Flintsch and S. Khaleghian (2019) Pavement friction management – artificial neural network approach. 
International Journal of Pavement Engineering, v. 20, n. 2, p. 125-135. DOI: 10.1080/10298436.2016.1264221. 

Oliveira, P.V.S. (2017) Estudo Preliminar do Comportamento da Capacidade de Atrito nas Pistas de Pouso e Decolagem 
do Aeroporto Pinto Martins. Undergraduate thesis (bachelor degree). Universidade Federal do Ceará, Fortaleza, CE. 
Available at: <http://www.repositorio.ufc.br/handle/riufc/29491> (accessed 03/17/2023).   

Quariguasi, J.B.F.; F.H.L. Oliveira and S.D.S. Reis (2021) A prediction model of the coefficient of friction for runway 
using artificial neural networks. Transportes, v. 29, n. 2, p. 2401. DOI: 10.14295/transportes.v29i2.2401. 

Ribeiro, A.J.A.; C.A.U. Silva and S.H.D.A. Barroso (2018) Metodologia de baixo custo para mapeamento geoté cnico apli-
cado à pavimentação. Transportes, v. 26, n. 2, p. 84-100. DOI: 10.14295/transportes.v26i2.1491. 

Santos, A.; E. Freitas; S. Faria et al. (2014) Degradation prediction model for friction in highways. In Murgante, B.; S. 
Misra; A.M.A.C. Rocha et al. (eds.) Computational Science and Its Applications - ICCSA 2014 14th International 
Conference, Guimarães, Portugal, June 30 - July 3, 204, Proceedings, Part III. Cham: Springer, p. 606-614. DOI: 
10.1007/978-3-319-09150-1_44. 

Shahin, M.Y. (2005) Pavement Management for Airports, Roads, and Parking Lots (2nd ed). New York: Springer. 

https://doi.org/10.3141/2369-13
https://doi.org/10.11606/D.18.2002.tde-06032002-131951
https://doi.org/10.1080/10298430500195432
https://doi.org/10.3141/2068-13
http://dx.doi.org/10.1177/0361198196152400122
http://dx.doi.org/10.1061/(ASCE)0733-947X(1997)123:6(429)
https://doi.org/10.1061/JPEODX.0000088
https://doi.org/10.1080/10298436.2016.1264221
https://doi.org/10.14295/transportes.v29i2.2401
https://doi.org/10.14295/transportes.v26i2.1491
http://dx.doi.org/10.1007/978-3-319-09150-1_44


Ribeiro and Oliveira Volume 31 | Número 2 | 2023  

 

TRANSPORTES | ISSN: 2237-1346 14 

Skerritt, W.H. (1993) Aggregate type and traffic volume as controlling factors in bituminous pavement friction. 
Transportation Research Record, v. 1418, p. 22-29. 

Susanna, A.; M. Crispino; F. Giustozzi et al. (2017) Deterioration trends of asphalt pavement friction and roughness 
from medium-term surveys on major Italian roads. International Journal of Pavement Research and Technology, v. 
10, n. 5, p. 421-433. DOI: 10.1016/j.ijprt.2017.07.002. 

Thube, D.T. (2012) Artificial Neural Network (ANN) based pavement deterioration models for low volume roads in 
India. International Journal of Pavement Research and Technology, v. 5, n. 2, p. 115-120. 

Yao, L.; Q. Dong; J. Jiang et al. (2019) Establishment of prediction models of asphalt pavement performance based on a 
novel data calibration method and neural network. Transportation Research Record, v. 2673, n. 1, p. 66-82. DOI: 
10.1177/0361198118822501. 

http://dx.doi.org/10.1016/j.ijprt.2017.07.002
https://doi.org/10.1177/0361198118822501

