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ABSTRACT 
In light of the unavailability of traffic volume data for all road segments, the scientific 
literature proposes estimating this variable using spatial interpolators. However, 
most of the methods found use the Euclidean distance between the database points 
as a proximity measure, in addition to ignoring the anisotropy of the phenomenon. 
Thus, the objective of the present study was to apply Ordinary Kriging (OK) with 
network distances and considering the anisotropy in traffic volume data on 
highways in the state of São Paulo (Brazil). Additionally, the two previous results 
were compared to the traditional isotropic approach with Euclidean distances. 
Goodness-of-fit measures confirmed the good performance and better suitability of 
OK with network distances over the analyses that use Euclidean distances. 
Addressing the anisotropy of the traffic volume data also helped to improve the 
results. The proposed method can effectively support estimating traffic volume in 
segments without flow data. 

RESUMO 
Tendo em vista a indisponibilidade de dados de volume de tráfego para todos os 
trechos viários, a literatura científica propõe a estimativa dessa variável a partir de 
interpoladores espaciais. Contudo, a maioria das abordagens encontradas utiliza a 
distância euclidiana entre os pontos do banco de dados e ignora a anisotropia do 
fenômeno. Dessa forma, o objetivo do presente trabalho foi aplicar a Krigagem 
Ordinária (KO) com distâncias em rede e anisotropia ao volume de tráfego em 
rodovias do estado de São Paulo, comparando seus resultados aos da abordagem 
isotrópica com distâncias euclidianas. Métricas de aderência confirmaram o bom 
desempenho e melhor adequabilidade da KO com distâncias em rede, em 
detrimento das análises com distâncias euclidianas. Tratar a anisotropia do volume 
de tráfego também contribuiu para a melhoria dos resultados. O método proposto 
pode servir efetivamente como suporte à estimativa do volume de tráfego em 
trechos sem dados de fluxo. 
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1. INTRODUCTION AND BACKGROUND 

The Annual Average Daily Traffic (AADT) is an important variable of interest for the 
Traffic Engineering area, as it is the basis for pavement design, accident modeling, 
identification of critical segments, level of service analysis (DNIT, 2006) etc. However, this 
data is only attained directly in segments provided with counting devices, survey stations, 
tolls, and others. Bearing in mind the need to know the traffic volume in segments without 
counting stations, the scientific literature has methods, from the simplest to the most 
sophisticated, to estimate the AADT along an entire road network. 

In this context, there are deterministic interpolators, such as inverse distance weighting, 
trend analysis, historical average and nearest neighbor (Klatko et al., 2017; Yang et al., 2018), 
which depend only on data referring to the variable of interest itself. Solutions based on the 
sequential transport planning method (Ortúzar and Willumsen, 2011) can also be found, 
which, in addition to the information provided by the counting stations, also require obtaining 
an origin and destination matrix (UFRJ, 2018; Wang et al., 2013). Multivariate approaches, 
which also use explanatory variables, have been consistently used to estimate AADT and can 
be divided into two main groups: 1) statistical models, such as generalized linear and local 
spatial models (Apronti et al., 2016; Duddu and Pulugurtha, 2013; Pulugurtha and Kusam, 
2012; Pulugurtha and Mathew, 2021); and 2) machine learning algorithms, such as neural 
networks and support vector regression (Duddu and Pulugurtha, 2013; Khan et al., 2018; 
Sharma et al., 2001). 

Based on the observation that the AADT is usually spatially dependent, that is, traffic 
volumes in segments close to each other are more related than in distant segments (Tobler, 
1970), from the 2000s onwards, Geostatistics started to be proposed as a solution to the lack 
of traffic volume data (Eom et al., 2006). It consists of a set of interpolators that treat spatially 
dependent variables as random, allowing to incorporate statistical inference in their 
estimates (Matheron, 1971). Conversely, traditional spatial interpolators, such as inverse 
distance weighting and nearest neighbor, are deterministic, which means that they are not 
able to provide uncertainty measures for the calculated estimates (for example, variance and 
confidence intervals). 

Another advantage of Geostatistics is the fact that some of its interpolators do not require 
additional data to carry out the prediction, and their computational routine is freely available 
on software such as R (R Core Team, 2021; Pebesma, 2004; Ribeiro Jr. and Diggle, 2016; Ver 
Hoef, 2018), SGeMS (Remy et al., 2009) and GSLIB (Deutsch and Journel, 1998). Some of these 
interfaces also allow the user to incorporate modifications into the calculation code. On the 
other hand, approaches such as the four-step modeling, statistical models and machine 
learning algorithms strictly depend on explanatory variables, which may not be easily 
available and require time for collection. In the case of the four-step modeling, the analysis 
often relies on a costly software, such as the TransCAD. In turn, machine learning algorithms 
may fail in accounting for the spatial dependence of traffic data (Song and Kim, 2022). 

Geostatistics was formerly created to model spatially continuous variables. In spite of that, 
geostatistical interpolators were expanded, due to their convenience, to areas such as 
epidemiology, aquaculture, agriculture, forest sciences (Carvalho et al., 2015; Goovaerts, 2009; 
Kerry et al., 2016; Stelzenmüller et al., 2005), whose variables of interest are spatially discrete. 
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The lack of data on travel demand variables, which are usually spatially discrete, has led to an 
increasing number of geostatistical applications to travel demand modeling, with results that 
represent an important contribution to the planning and operation of transport systems 
(Gomes et al., 2018; Lindner and Pitombo, 2019; Marques and Pitombo, 2021a; Yang et al., 
2018; Zhang and Wang, 2014). Several studies using Geostatistics for spatially estimate travel 
demand variables can be found in the bibliographic review by Marques and Pitombo (2020). 
Along these studies, the spatial dependence of travel demand variables is confirmed by the well-
structured variograms calculated in the geostatistical modeling step. Even though Geostatistics 
allows calculating the variable of interest in all geographic coordinates of the database, case 
studies using travel demand variables seek to obtain an estimate only in the points where the 
phenomenon occurs, which may be along a road network or bus route, for example. 

Geostatistical applications to Annual Average Daily Traffic modeling cover various types of 
interpolation techniques, commonly called Kriging after Krige (1951), whose pioneering study 
in mining engineering inspired the first steps into the development of the Geostatistics 
framework. The interpolators are: Simple Kriging (SK), Ordinary Kriging (OK), Universal 
Kriging (UK), Regression Kriging (RK), Empirical Bayesian Kriging (EBK), and Spatio-temporal 
Kriging (STK). Of these models, only UK and RK use explanatory variables, meaning that the 
remaining ones are univariate interpolators. Table 1 summarizes the studies found in the 
literature addressing the lack of traffic volume data using Geostatistics. 

Table 1: Geostatistical applications to AADT modeling 

Source Number of points Variographic 
models Variable(s) Methods used Comments 

Eom et al. (2006) 200 Exp*, Gau, and 
Sph* 

AADT UK and LR Best results from UK; variation of 
errors according to the density of 

counting stations. 
Wang and Kockelman 

(2009) 
27738 Exp*, Gau, and 

Sph 
AADT UK Best results for the case of 

intermediate traffic volumes, 
compared to the low and high-

volume cases. 
Chi and Zheng (2013) 91 Exp, Gau, Sph, 

and Cauchy* 
AADT / Transport 
carbon footprint 

OK with network 
distances 

Percentage of error variation 
according to the magnitude of 

real values (error increases as the 
real value increases); reduced 

number of points for calculating 
the semivariogram. 

Selby and Kockelman 
(2013) 

3145, 667, 3017, 
1053, 6256, 3532 

Exp*, Gau and 
Sph 

AADT UK, with network and 
Euclidean distances, 
GWR and non-spatial 

model 

UK performed best; variation of 
errors according to the density of 

counting stations. 

Shamo et al. (2015) 4992, 7485, 7734 Exp, Gau and 
Sph 

AADT SK, OK and UK No pattern of best technique was 
found. 

Sarlas and Axhausen 
(2015) 

314 Exp*, Gau and 
Sph 

AADT LR; NBR; SEM 
(Euclidean, network 

distance, and network 
time); SLM (Euclidean, 
network distance, and 
network time); GWR; 

Kriging 

GWR and Kriging had the best 
results in calibration and 

validation samples, respectively; 
little difference was seen 

between kriging and SAR models; 
network results similar to 
Euclidean ones; network 

distances were not used in 
kriging interpolation. 

Kim et al. (2016) 127 Exp, Gau and 
Sph* 

AADT / VMT HPMS (Highway 
Performance 

Monitoring System 
method), LR, and RK 

Best results from RK. 
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Source Number of points Variographic 
models Variable(s) Methods used Comments 

Klatko et al. (2017) 93, 223, 71, 203, 
148, 80, 147, 116, 

129, 51 

not reported AADT / VMT OK, IDW, natural 
neighbor and trend 

Considering only the validation 
results, no pattern of best 

technique was found. 
Yang et al. (2018) For training, data 

collected every 
30s from 1 sensor 
covering a whole 

day was used 

not reported Traffic volume STK, historical average 
and k-nearest 
neighborhood 

Best results from STK. 

Song et al. (2019) 627 not reported Vehicles/(km.day) IDW; OK; Segment-
based OK; LR; UK; RK; 

Segment-based RK 

Best results from SRK for heavy 
vehicles, and RK for light 

vehicles; Kriging yields better 
results compared to non-spatial 
models (LR) and non-stochastic 

interpolators (IDW). 
Mathew and 

Pulugurtha (2021) 
12899 Exp*, Sph, 

Power, and 
Linear 

AADT in local roads LR; GWR; SK, OK, UK, 
and EBK; IDW; and 
natural neighbor 

interpolation 

Considering the validation 
results, GWR and EBK yielded the 
best results, but GWR performed 

slightly better. However, the 
kriging technique does not use 

predictor data information. 
Note: Exp, Gau, and Sph are Exponential, Gaussian, and Spherical semivariogram models. VMT expresses Vehicle Miles Traveled. IDW, LR, 
NBR, SAR, SEM, SLM, GWR, SK, OK, UK, RK, EBK, and STK stand out, respectively, for Inverse Distance Weighting, Linear Regression, Negative 
Binomial Regression, Spatial Autoregressive models, Spatial Error Model, Spatial Lags Model, Geographically Weighted Regression, Simple 
Kriging, Ordinary Kriging, Universal Kriging, Regression Kriging, Empirical Bayesian Kriging, and Spatio-temporal Kriging. 
* Model with the best results among the models being compared. 

Table 1 shows that geostatistical interpolation of AADT has yielded better results than 
traditional techniques, such as Linear Regression and Negative Binomial Regression, which do 
not account for the spatial dependence of traffic data (Eom et al., 2006; Kim et al., 2016; Mathew 
and Pulugurtha, 2021; Sarlas and Axhausen, 2015; Selby and Kockelman, 2013; Song et al., 
2019). Kriging also performed better than other interpolation techniques, such as Inverse 
Distance Weighting (IDW), natural neighbor, historical average, and k-nearest neighborhood 
(Mathew and Pulugurtha, 2021; Song et al., 2019; Yang et al., 2018). The potential of kriging to 
predict AADT in uncounted locations has proven, in some case studies, to be superior to some 
other spatial models, such as Geographically Weighted Regression (Selby and Kockelman, 
2013) and spatial autoregressive models (Sarlas and Axhausen, 2015). 

However, most of the studies found rely on the Euclidean distance as the distance measure 
that helps explain spatial dependence between points in the database. As the traffic flow occurs 
along a road network, using network distances, rather than straight-line ones, could provide 
better estimates of AADT in the kriging interpolation (Eom et al., 2006; Wang and Kockelman, 
2009). However, Table 1 shows that only two studies applied network distances in the spatial 
interpolation of AADT (Chi and Zheng, 2013; Selby and Kockelman, 2013), but only Selby and 
Kockelman (2013) provided a comparison between results from Euclidean and network 
distances. In this case, the authors concluded that using distances along the road network did 
not contribute significantly to improving the kriging estimates, and may not compensate the 
high computational demand process to perform kriging with network distances. 

Little difference was seen between results from the two types of distance in the study of 
Sarlas and Axhausen (2015). Although the authors did not use network distances in kriging, 
they applied them in the spatial weights matrix of the spatial autoregressive models used. 

Network distances have already been tested in the geostatistical modeling of other 
variables related to travel demand, however there are no consensual results. To assure 

Table 1: Continued… 
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positive definiteness of covariance matrices, Zou et al. (2012) used an approximate road 
network distance for modeling urban travel speeds using Universal Kriging. The outcomes 
were better than those obtained from Euclidean distances. Conversely, little or no 
improvement was seen in the geostatistical modeling of transit ridership variables, such 
as boardings per metro station (Zhang and Wang, 2014) and boarding, alighting and 
loading at the bus stop level or route segment level (Marques and Pitombo, 2021b, 2021c). 

Nevertheless, a recent study (Wong and Kwon, 2021) proved that network distances 
can, in fact, yield better estimates of winter weather collisions using Regression Kriging 
when compared to the Euclidean results. However, accidents can occur at any point along 
the road network, while traffic data assumes only one value in the length of a segment. 
Although collisions and traffic volume are positively related, the former consists of a 
variable with high occurrence of zeros, and it is much more random in nature than vehicle 
flow. Moreover, to better capture the weather variability along the road network, the 
authors divided the road segments into segments of up to 5km. Although better results 
were achieved in the network distance approach, the AADT modeling, which usually keeps 
the original length of road segments, could yield even better outcomes, as in this case the 
difference between network and straight-line distances is higher. 

Although using network distances is a promising approach for the spatial estimation of 
AADT, geostatistical modeling that uses non-Euclidean distances can generate estimates 
with negative variances (Ver Hoef, 2018). Depending on the theoretical semivariogram 
model, applying distances along the road network could make it harder to attain positive 
covariance matrices, which are necessary to obtain positive uncertainty measures when 
estimating AADT at an unsampled point. However, the studies that addressed the AADT 
using Geostatistics with network distances (Chi and Zheng, 2013; Selby and Kockelman, 
2013) did not carry out any type of inspection to verify the occurrence of this problem 
and thus circumvent it, if necessary. 

The absence of anisotropic analysis is also observed in all cited studies. However, spatial 
variables may present spatial dependence primarily along a given spatial direction, that is, 
the spatial behavior varies according to the analyzed direction. Thus, the accuracy of 
estimates resulting from interpolators that ignore this feature, when it exists, can be 
negatively affected (Oliver and Webster, 2015). Nevertheless, since, in the network distance 
approach, the direction under analysis is the network direction, there would not only be a 
single possible direction between pairs of segments, but numerous ones. Consequently, an 
anisotropic spatial modeling with network distances may not be feasible. 

Based on the problems exposed above, the following research gaps are enumerated: 
▪ Spatial modeling of AADT using distances along the road network: the use of 

network distances to estimate a travel demand variable is still little explored. 
▪ Anisotropic spatial modeling of AADT: although using network distances can better 

represent the spatial behavior of AADT and, consequently, generate better estimates, 
this approach does not allow the inclusion of anisotropic analysis. Using network 
distances can be a way to capture the directional variation of AADT, but the usual 
treatment of anisotropy in Euclidean space may eventually compete against the 
isotropic method with network distances, given the large computational efforts 
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normally required to calculate network distances. The anisotropic approach, however, 
has not yet been addressed in previous studies. 

▪ Verification of gains from the application of network distances or anisotropy, in 
comparison with the traditional isotropic approach with Euclidean distances, in 
the spatial modeling of AADT. 

Figure 1 illustrates the main research gaps and associated justification. In addition, it 
represents the spatial approaches used in this paper. 

 
Figure 1. Flowchart of proposed methods based on research gaps 

Therefore, the main objective of this article is to model the AADT from Ordinary Kriging 
(OK) with network distances and OK with anisotropy treatment. As a specific objective, 
the results of these two approaches will be compared with each other and with the results 
of the isotropic OK with Euclidean distances in a case study focused on the road network 
in the state of São Paulo - SP (Brazil). 

This article is divided into 5 sections. Section 2 highlights the impact of network 
distances and anisotropy on the spatial estimation of AADT from illustrative examples. 
The third section details the database used as a case study and the method stages applied. 
Section 4 shows the results obtained and discusses answers to the title question of the 
article. The last section summarizes the contributions achieved by the present study and 
lists suggestions for future research. 

2. INFLUENCE OF NETWORK DISTANCES AND ANISOTROPY 

Figure 2 illustrates the impact of using network distances on the spatial estimation of AADT. 
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Figure 2. Comparison between network and Euclidean distances 

Assume that neighbors 574 and 577 will be used to estimate the AADT at point 460. 
Figure 2 shows that, in addition to the network distance being clearly greater than the 
straight-line distance, in the exposed case the magnitude pattern between network and 
Euclidean distances do not hold for the distance pairs between point 460 and its neighbors 
574 and 577. Point 577 is 34 km away from point 460, considering the straight-line 
distance. For point 574, this distance increases to 39 km. In contrast, this pattern is 
inverted when network distances are used, as the distance between points 460 and 574 
is smaller (57 km) than between points 460 and 577 (approximately 70 km). 

Thus, in traditional modeling with Euclidean distances, point 577 tends to receive greater 
weight than point 574 in the AADT estimate at point 460. However, the actual distance 
between points 460 and 574 is smaller than between 460 and 577. Based on the assumption 
of spatial continuity of the regionalized phenomenon along the road network and not in a 
straight line, point 574 should have more weight in the AADT estimate at 460 than point 577. 

Although using network distances makes it difficult to incorporate anisotropy in the 
geostatistical modeling, this approach is also a way to deal with the directional variation 
of AADT. Regarding anisotropy, there is a main direction in which the spatial continuity 
of AADT is greater, that is, the spatial dependence, expressed by the semivariogram 
function, prevails over a greater distance than in the other directions. This distance refers 
to the range parameter of the theoretical semivariogram. Thus, points along this main 
direction tend to receive greater weight in the AADT estimate at an unsampled point than 
other neighboring points. 

Figure 3 provides a hypothetical example of the difference between the three 
approaches that will be compared in the present study. The AADT at the unsampled point 
in red will be estimated based on four neighbors, equidistant from it in a straight line. The 
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weight assigned to neighbors in each case is expressed by the value 𝜆𝜆. The main direction 
is the vertical axis. Applying these approaches to a real case study is detailed in Section 3. 

 
Figure 3. Influence of network distances and anisotropy on the kriging weights 

3. MATERIALS AND METHOD 

Figure 4 highlights the spatial variability of the Brazilian road network and count 
locations in 2017. The data necessary for geostatistical modeling were made available by 
the National Department of Transport Infrastructure (DNIT, Departamento Nacional de 
Infraestrutura de Transportes). There is a greater concentration of highways in the eastern 
half of the country, mainly in the state of São Paulo, which also has the largest number of 
count locations. The density of count locations increases significantly in the vicinity of the 
homonymous capital, which is the most populous city in the country (IBGE, 2021). 

In view of the sizeable Brazilian road network (Figure 4) and to limit the study region 
and enhance the results of the geostatistical modeling, only the state of São Paulo was 
chosen to participate in the case study. This state was chosen because of its higher density 
of counting stations and relative ease in acquiring data regarding its road network. In 
addition, the parameters of the semivariogram models, necessary for calculating the 
spatial estimates, may be heterogeneous across different geographic units (Wong and 
Kwon, 2021). Reducing the spatial coverage of the database, for instance AADT, ensures 
that the models capture local characteristics and, consequently, generate better estimates. 

To test the geostatistical potential in estimating the AADT with different network 
distances and sample quantities, the present case study covered two scenarios: a more 
restrictive one, that is, with a smaller number of samples; and a more complete one. The 
database used comprises the spatially distributed Annual Average Daily Traffic (variable 
of interest), with respective geographic coordinates, and the road layout that connects 
these points. In this context, the National Department of Transport Infrastructure made 
available two data sources: 1) shapefile containing the AADT in 742 count locations, for 
2017; and 2) spreadsheet with the results of the AADT modeling carried out by DNIT in 
2017 covering a total of 5,722 road segments of the National Road Traffic System (SNV, 
Sistema Nacional de Viação). 



Marques, S. F.; et al. Volume 31 | Número 1 | 2023  

 

TRANSPORTES | ISSN: 2237-1346 9 

 
Figure 4. Brazilian road network and count locations in 2017 

Of the 742 counting stations, the state of São Paulo had 143 in 2017, while that year, of 
the 5,722 road segments of federal highways, 339 were from São Paulo. Since Geostatistics 
deals only with data in the form of points, the AADT information in these 339 segments 
was assigned to the midpoint of the segment, using, as a basis, the SNV shapefile 
corresponding to the 2017 DNIT modeling (version 201801B). Since both the DNIT 
spreadsheet and the SNV shapefile had a common identifier for the segments, it was 
possible to proceed with the spatialization of the AADT modeled by the DNIT along the 
reference segments. Thus, the two scenarios analyzed were: 1st) AADT in 143 count 
locations; 2nd) AADT in 339 road segments, represented by the respective midpoint. 

In terms of the road network, three data sources were used to calculate network 
distances: 1) SNV shapefile corresponding to the 2017 DNIT modeling (version 201801B); 
2) kmz file of segments of state highways under concession in São Paulo; and 
3)  OpenStreetMap road network corresponding to the state of São Paulo. The data from the 
OpenStreetMap were added to those from the DNIT and the highways under concession 
until the final layout was equivalent to the map of federal and state highways in the state of 
São Paulo, available as a Web Map Service (WMS) layer for 2014 on the DataGEO website 
(https://datageo.ambiente.sp.gov.br/ [Accessed in jun. 2022]). Network distances were 
calculated in GRASS GIS. The method steps are described in the next subsections. 

3.1. Exploratory analysis 

The exploratory analysis stage consists of two sub-steps: 1) Spatial dependence 
verification; and 2) Asymmetry correction. In this context, the spatial files of the 143 
counting stations and 339 segment midpoints, with associated AADT, were submitted to 
an exploratory analysis of spatial dependence based on the calculation of the Moran index 
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(Moran, 1948). The elements of the spatial weight matrix adopted in the present study 
were equivalent to the inverse of the network distance between points 𝑖𝑖 and 𝑗𝑗. 

The Moran index helps to anticipate the suitability of the variable of interest to the 
geostatistical treatment: the closer to 1, the greater the spatial dependence, and the better 
the results of the spatial interpolators will be. Results close to zero reflect the absence of 
spatial structure, and the closer to -1, the greater the spatial dispersion/dissociation of 
the variable of interest. 

Subsequently, measures of central tendency and dispersion were calculated for the 
AADT in both scenarios. Due to their remarkable positive asymmetry, these data were 
converted to normal distribution by the Box-Cox transformation (Box and Cox, 1964), 
since Ordinary Kriging assumes normality for the dependent variable. The Moran index 
and Box-Cox transformation were calculated in the open and free programming tool R (R 
Core Team, 2021; Millard, 2013; Paradis et al., 2004). 

3.2. Minimum eigenvalue analysis 

Ver Hoef (2018) showed that the occurrence of negative variances in kriging estimates 
can be analyzed based on the minimum eigenvalues of the covariance matrices, which are 
associated with the autocorrelation models selected for spatial interpolation. In the 
present article, three models were initially adopted: exponential, spherical and Gaussian 
(Chiles and Delfiner, 2012). 

The procedure consists of calculating the eigenvalues for different range values of the 
theoretical models and applying the network distance matrix of the scenarios considered. 
Minimum eigenvalue analysis allows identifying range parameter values whose covariance 
matrices are positive definite. If negative minimum eigenvalues are found for small range 
values, there is a high chance the autocorrelation model generates negative variances. 
Consequently, this model is disregarded in the geostatistical modeling stages. If the 
theoretical semivariogram results in a range greater than the maximum range for which a 
minimum eigenvalue greater than zero is obtained, this semivariogram model should also 
be discarded. The geostatistical modeling stages are described in the next subsections. 

3.3. Empirical semivariogram 

The semivariogram 𝛾𝛾(ℎ) , also known as variogram 2𝛾𝛾(ℎ) , is an important tool to 
identify the spatial autocorrelation of the sampled values. The empirical semivariogram 
function is expressed by Equation 1 (Cressie, 1993): 

𝛾𝛾(ℎ) = 1/2𝑁𝑁(ℎ)∑ [𝑍𝑍(𝑥𝑥𝑖𝑖) −  𝑍𝑍(𝑥𝑥𝑖𝑖 + ℎ)]²𝑁𝑁(ℎ)
𝑖𝑖=1    (1) 

where, 𝑍𝑍(𝑥𝑥𝑖𝑖) is the variable of interest at geographic position 𝑥𝑥𝑖𝑖, ℎ is the distance between pairs 
of points, and 𝑁𝑁(ℎ) represents the number of pairs situated at a distance ℎ. The search for pairs 
to calculate the empirical semivariogram is performed based on five main parameters: 
direction (𝜑𝜑, angle measured from the horizontal axis in a counterclockwise direction), angular 
tolerance (∆𝜑𝜑), lag (ℎ), lag tolerance (∆ℎ) and maximum width (Oliver and Webster, 2015). 
When considering the phenomenon as isotropic, that is, that the spatial variation occurs in a 
similar way in all directions, the omnidirectional semivariogram is calculated. In this case, all 
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pairs of points located at a distance ℎ ± ∆ℎ are selected, regardless of their direction. However, 
if the variable presents anisotropy, the pairs of points are limited to the 𝜑𝜑 ± ∆𝜑𝜑 directions. 

The empirical semivariogram was calculated for the two scenarios described above and 
considering three different situations: 1) anisotropic phenomenon with Euclidean distances; 
2) isotropic phenomenon with Euclidean distances; and 3) isotropic phenomenon with 
network distances. The presence of anisotropy was identified based on an exploratory 
analysis, in which the empirical semivariogram is calculated for several different directions. 

3.4. Theoretical semivariogram 
To perform the kriging interpolation, theoretical models of semivariograms are fitted 

to the empirical semivariograms calculated. The theoretical models are characterized by 
three parameters: nugget effect (𝐶𝐶0), which corresponds to the semivariance for very 
small distances and reflects the spatial randomness of the phenomenon. It may also 
represent lack of information or sampling error; partial sill (𝐶𝐶), which is termed as the 
spatial variance between the points; and range (𝐴𝐴/𝑎𝑎), which represents the distance from 
which there is no more autocorrelation between the points (Matheron, 1971). For this 
article, we tested the semivariogram models corresponding to the autocorrelation models 
presented in subsection 3.2. They are: exponential (Equation 2), spherical (Equation 3) 
and Gaussian (Equation 4) (Olea, 2006): 

𝛾𝛾(ℎ) = 𝐶𝐶0 + 𝐶𝐶[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−ℎ/𝑎𝑎)]   (2) 

𝛾𝛾(ℎ) = �𝐶𝐶0 + 𝐶𝐶[1.5(ℎ/𝑎𝑎) − 0.5(ℎ/𝑎𝑎)3] 𝑖𝑖𝑖𝑖 ℎ < 𝑎𝑎
𝐶𝐶0 + 𝐶𝐶 𝑖𝑖𝑖𝑖 ℎ ≥ 𝑎𝑎   (3) 

𝛾𝛾(ℎ) = 𝐶𝐶0 + 𝐶𝐶[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−(ℎ/𝑎𝑎)²)]   (4) 

If the semivariograms present different values of range and/or partial sill for different spatial 
directions, it is concluded that the variable of interest exhibits anisotropy. After verifying that 
the range and sill vary as a function of the direction, obtaining an isotropic semivariogram that 
accounts for this characteristic is performed as described in the following subsection. 

3.5. Anisotropy 
Geometric (range) anisotropy is accounted for by modeling the range as the axes of an 

ellipse. The coordinate system, whose axes are equivalent to the main and secondary 
directions, is initially used. The main direction is the one with the greatest range and the 
secondary direction is assumed to be perpendicular to the main direction (Eriksson and 
Siska, 2000). The anisotropic semivariogram is converted to isotropic through a process 
of rotation and stretching/shrinking of the initial axes, so they coincide with the axes of 
the coordinate system in which the variable is measured (Deutsch and Journel, 1998; 
Eriksson and Siska, 2000; Isaaks and Srivastava, 1989). 

When both range and partial sill vary with spatial direction, an isotropic 
semivariogram is initially calculated in the direction of lowest partial sill (𝐶𝐶1), represented 
by the angle 𝜃𝜃, which is also the direction with the greatest range. A second structure is 
added to this structure, with a partial sill equal to the difference between the highest and 



Marques, S. F.; et al. Volume 31 | Número 1 | 2023  

 

TRANSPORTES | ISSN: 2237-1346 12 

lowest partial sills (𝐶𝐶2), and with anisotropic range. Thus, the exponential model takes the 
form shown in Equation 5: 

𝛾𝛾(ℎ,𝜑𝜑) = 𝐶𝐶0 + 𝐶𝐶1[1 − 𝑒𝑒𝑥𝑥𝑒𝑒(−ℎ/𝑎𝑎1)] + 𝐶𝐶2�1 − 𝑒𝑒𝑥𝑥𝑒𝑒�−ℎ/𝑎𝑎𝜑𝜑��  (5) 

where 𝑎𝑎1 is the isotropic range of the first structure. For the second structure, the range along 
the lowest sill direction (θ) is considered to be extremely large so that the term (ℎ/𝑎𝑎𝜑𝜑) → 0 
when the semivariogram function approaches the θ direction. Thus, the influence of the 
second structure on the semivariogram function is negligible in the 𝜃𝜃 direction, but exhibits 
its maximum contribution in the highest sill direction (Eriksson and Siska, 2000). 

Since the second structure has geometric anisotropy, the range 𝑎𝑎𝜑𝜑 is calculated based 
on Equation 6 (Eriksson and Siska, 2000): 

𝑎𝑎φ = ℎ/�𝑏𝑏1𝛥𝛥𝑥𝑥2 − 𝑏𝑏2𝛥𝛥𝑥𝑥𝛥𝛥𝛥𝛥 + 𝑏𝑏3𝛥𝛥𝛥𝛥2   (6) 

where 𝑏𝑏1 = (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃/𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥)2 + (𝑐𝑐𝑖𝑖𝑠𝑠 𝜃𝜃/𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠)2,𝑏𝑏2 = 2𝑐𝑐𝑖𝑖𝑠𝑠 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃�1/𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠2 − 1/𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥2 � , and 
𝑏𝑏3 = (𝑐𝑐𝑖𝑖𝑠𝑠 𝜃𝜃/𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥)2 + (𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃/𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠)2 , 𝛥𝛥𝑥𝑥  and 𝛥𝛥𝛥𝛥  are, respectively, the horizontal and 
vertical components of the distance vector h in the original data coordinate system. In this 
case, 𝑎𝑎𝑚𝑚𝑖𝑖𝑠𝑠 is the range in the 𝜃𝜃 direction and 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 was assumed as 1030. 

3.6. Ordinary Kriging 
Ordinary Kriging estimates are given by Equation 7 (Matheron, 1971): 

𝑍𝑍𝑥𝑥0
∗ = ∑ 𝜆𝜆𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑍𝑍(𝑥𝑥𝑖𝑖)   (7) 

where 𝑍𝑍𝑥𝑥0
∗  is the attribute estimated at point 𝑥𝑥0; 𝜆𝜆𝑖𝑖 are kriging weights; and 𝑍𝑍(𝑥𝑥𝑖𝑖) is the 

observed value of the variable 𝑍𝑍  at the i-th point. Thus, it is a linear combination of 
sampled neighbor values associated with optimal weights. 

The OK weights are calculated by a system of equations, represented in matrix form 
according to Equation 8 (Cressie, 1993): 

⎣
⎢
⎢
⎢
⎡
𝛾𝛾(𝑥𝑥1 − 𝑥𝑥1) 𝛾𝛾(𝑥𝑥1 − 𝑥𝑥2) … 𝛾𝛾(𝑥𝑥1 − 𝑥𝑥𝑛𝑛) 1
𝛾𝛾(𝑥𝑥2 − 𝑥𝑥1) 𝛾𝛾(𝑥𝑥2 − 𝑥𝑥2) ⋯ 𝛾𝛾(𝑥𝑥2 − 𝑥𝑥𝑛𝑛) 1

⋮ ⋮ ⋮ ⋮ ⋮
𝛾𝛾(𝑥𝑥𝑛𝑛 − 𝑥𝑥1) 𝛾𝛾(𝑥𝑥𝑛𝑛 − 𝑥𝑥2) ⋯ 𝛾𝛾(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛) 1

1 1 ⋯ 1 0⎦
⎥
⎥
⎥
⎤

 ∙  

⎣
⎢
⎢
⎢
⎡
𝜆𝜆1
𝜆𝜆2
⋮
𝜆𝜆𝑛𝑛
𝜇𝜇 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝛾𝛾(𝑥𝑥0 − 𝑥𝑥1)
𝛾𝛾(𝑥𝑥0 − 𝑥𝑥2)

⋮
𝛾𝛾(𝑥𝑥0 − 𝑥𝑥𝑛𝑛)

1 ⎦
⎥
⎥
⎥
⎤
  (8) 

where the values of 𝛾𝛾(𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛) represent the modeled semivariance of the n-th sample 
with respect to itself; the values of 𝜆𝜆𝑠𝑠 are the optimal weights of kriging; 𝜇𝜇 is the Lagrange 
multiplier; and 𝛾𝛾(𝑥𝑥0 − 𝑥𝑥𝑛𝑛) is the modeled semivariance between the n-th sample and the 
point to be estimated 𝑥𝑥0. Therefore, the weight values are obtained from the product of the 
inverse of the semivariance matrix between the sampled points [𝐾𝐾] and the semivariance 
matrix between the point to be estimated and its sampled neighbors [𝑀𝑀] (Equation 9): 

[𝜆𝜆] = [𝐾𝐾]−1 ∙ [𝑀𝑀]   (9) 
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3.7. Cross-validation 
Finally, in order to evaluate the performance of Ordinary Kriging, a cross-validation step is 

carried out, known as leave-one-out (Cressie, 1993). The procedure is performed by removing 
each sampled point from the database and this point is estimated from the neighboring values 
according to the method described in the previous subsections. It is then possible to compare 
the observed values to those estimated by OK based on several goodness-of-fit measures, such 
as: Absolute Percentage Error (APE), Root Mean Squared Error (RMSE) and Pearson's linear 
correlation coefficient (R) (Hollander and Liu, 2008). 

In addition, the nonparametric Mann-Whitney test was applied to the comparison 
between real and predicted values. The null hypothesis states that the two samples are 
from populations with the same distribution function. Therefore, for a 95% confidence 
level, we can accept the null hypothesis if the resulting p-value is greater than 0.05. 

To illustrate the functionality of Ordinary Kriging, 27 unsampled segments of the National 
Road Traffic System had their AADT estimated from sampled neighbors located within the 
range region. This example was carried out using data from the second scenario since it has a 
greater number of samples. Figure 5 summarizes the method used in the present article. 

 
Figure 5. Flowchart of methodological steps (𝑎𝑎 is the range parameter) 

3.8. Validation analysis 

To attest to the robustness of the proposed method in estimating missing traffic data, the 
datasets of the first and second scenarios were split into two samples: 1) calibration, with 
70% of the original database; and 2) validation, with the remaining 30%. In this paper, 
calibration samples refer to the points used to calculate the empirical semivariogram and 
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fit a model to it. The validation samples are the remaining points whose values are 
estimated based on the theoretical semivariogram adjusted previously. Estimates were 
calculated in both sampled (calibration) and missing (validation) points. Only network 
distances, coupled with a permissive semivariogram model, were used at this stage. 

The calibration samples were randomly selected based on the density of points in the 
original database using the R package “spatialEco” (Evans, 2021). Isotropic modeling with 
Euclidean and network distances was performed using the open-source programming 
interface R (R Core Team, 2021; Ver Hoef, 2018), while anisotropic modeling was 
performed using the Isatis software. The results of these three approaches for the two 
considered scenarios are presented in Section 4. 

4. RESULTS AND DISCUSSION 

Figure 6 shows the spatial and frequency distribution of the AADT along the 143 
counting stations (on the left) and 339 midpoints of federal road segments in the state of 
São Paulo (on the right). The road network laid out corresponds to state and federal 
highways in São Paulo. 

 
Figure 6. Spatial distribution of AADT in both scenarios 

Since the AADT in the 339 reference segments of the National Traffic System is based 
on the information from the 143 traffic counting stations, both maps have a similar 
pattern, showing the highest traffic volumes in the segments closest to the state capital. 
From the city of São Paulo, the AADT gradually decreases along the northwest direction. 
The main flows of goods and people are in the northwest direction due to a historical 
development policy in the interior of the state (Souza and Silveira, 2009). 

The high amplitude of traffic volume variation represents the inclusion of different values of 
the dependent variable in the modeling and, therefore, a more comprehensive analysis. The 
spatial pattern of AADT also reveals that the variable of interest demonstrates spatial 
autocorrelation, that is, points close to each other have more similar traffic volume than distant 
points. In fact, the Moran index obtained with the AADT values of the first and second scenarios 
was 0.157 and 0.201, respectively, both with statistical significance (𝑒𝑒𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑐𝑐 𝑒𝑒 𝑣𝑣𝑎𝑎𝑣𝑣𝑝𝑝𝑒𝑒 =  0). 
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The frequency of points in each AADT category confirms the positive asymmetry 
discussed in Section 3. Both scenarios have a mean greater than the median: in the first case, 
the mean and median are equivalent to 17,682 and 10,532 vehicles, respectively; in the 
second case, these values are 13,703 and 8,651 vehicles. To correct the asymmetry of the 
variables of interest, the power of the Box-Cox transformation was 0.2160749, in the first 
scenario; and 0.2149832 in the second. 

Then, the geostatistical modeling of AADT was carried out in the two scenarios 
considering three different approaches: anisotropic with Euclidean distances, isotropic 
with Euclidean distances and isotropic with network distances. However, the possibility 
that negative variances occur in the kriging estimates with network distances was verified 
before this step, based on the analysis of minimum eigenvalues. The graphs in Figure 7 
show the eigenvalues' variation due to the spatial arrangement of the two scenarios and 
the range parameter, considering the three theoretical models of autocorrelation typically 
used: exponential, Gaussian and spherical. 

 
Figure 7. Minimum eigenvalues for the first (a) and second (b) scenarios 

In both scenarios the Gaussian semivariogram reaches negative minimum eigenvalues 
quickly at small range values. Thus, only exponential and spherical semivariograms were 
used in the geostatistical modeling stage. For the exponential model, negative eigenvalues 
arise from an approximate range of 130 km in both scenarios, while the spherical 
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semivariogram presents this problem at ranges from 115 km, in the first case, and 90 km, 
in the second. However, the spherical semivariogram, adjusted to the points of the empirical 
semivariogram with network distances, resulted in range parameters greater than 200 km. 
Therefore, the kriging stage was carried out only with the exponential model, which 
presented calibrated range parameters smaller than 100 km in both cases with network 
distances, eliminating the possibility of negative variances in its kriging estimates. 

Figure 8 shows the empirical semivariograms of the anisotropic approach in the two 
scenarios considered, together with the respective exponential model and calibrated 
parameters. The angles are given in azimuths. 

The different semivariograms found for the directions of greater and lesser spatial 
continuity (Figure 8a and Figure 8b) show that there is, in fact, anisotropy in the spatial 
distribution of AADT. The main direction in the first and second scenarios was 160º and 0º, 
respectively, while the secondary direction was 250º and 90º. Figure 9 presents the isotropic 
semivariograms of the first scenario. 

 
Figure 8. Semivariograms of the transformed AADT in the main and secondary directions of the first  

(a) and second (b) scenarios 
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Figure 9. Semivariograms of the transformed AADT with Euclidean (a) and  

network (b) distances in the first scenario 

The calibrated exponential model, in the isotropic case with Euclidean distances of the 
first scenario, resulted in a range greater than 500 km, as a way to minimize the error 
between estimated and observed values. A range greater than 500 km would not be 
allowed in network distances, since it would be pointing to the occurrence of negative 
variances in the kriging estimates. This result may again indicate a better suitability of 
network distances compared to the traditional one. The isotropic semivariograms of the 
second scenario are shown in Figure 10. 

When comparing the isotropic semivariograms of the second scenario, which turned out 
to be a little more similar to each other, there is a greater range in the case with network 
distances. The ratio between both ranges is of 1.66, which is greater than 93% of the ratios 
between network and Euclidean distances from all pairs of points in the second scenario. A 
range parameter significantly greater for the network distance case may be revealing that this 
approach more accurately reflects the spatial continuity of the phenomenon under analysis. 

With regard to isotropic approaches, a better-defined spatial structure is clearly 
perceived in cases that use network distances, which points to a more adequate 
representation of the phenomenon when network distances are prioritized. Empirical 
semivariograms with network distances are smoother and exhibit much less fluctuation 
than those with Euclidean distances. The difference between the two types of distance is 



Marques, S. F.; et al. Volume 31 | Número 1 | 2023  

 

TRANSPORTES | ISSN: 2237-1346 18 

more noticeable in the first scenario (with 143 observations). Furthermore, the 
percentage of nugget effect relative to the sill, which reflects the spatial discontinuity of 
the variable of interest, is smaller in cases with network distances. 

 
Figure 10. Semivariograms of the transformed AADT with Euclidean 

 (a) and network (b) distances in the second scenario 

Table 2 shows the results of the goodness-of-fit measures applied to the comparison 
between original values and those estimated by cross-validation. Although the 
semivariograms were calculated and fitted based on the transformed values, the cross-
validation estimates were recalculated by applying the inverse transformation. Thus, the 
estimated values returned to the same scale as the originals. 

Table 2: Goodness-of-fit measures 
𝒏𝒏 Case Type of distance MedAPE RMSE R 

143 Anisotropic Euclidean 44.750% 14,439.743 0.654* 
Isotropic Euclidean 46.847% 16,016.041 0.617* 
Isotropic Network 38.055% 13,986.530 0.709* 

339 Anisotropic Euclidean 27.570% 9,597.729 0.775* 
Isotropic Euclidean 33.150% 10,112.490 0.793* 
Isotropic Network 26.691% 9,145.024 0.825* 

Note: MedAPE, RMSE and R express, respectively, the Median of Absolute Percentage Error, Root Mean Squared Error and Pearson's linear 
correlation coefficient between original and estimated values. 
* is statistically significant at a 99% confidence level (p < 0.01, one-tailed). 
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As expected, the anisotropic modeling estimates were better than the isotropic 
approach with Euclidean distances in both scenarios. However, although not being able to 
deal with the anisotropy of the phenomenon, the isotropic estimates with network 
distances were superior to both the anisotropic modeling and the omnidirectional 
modeling with Euclidean distances. This result shows that when considering the real path 
traveled between two sample points, the approach with network distances better 
represents the spatial behavior of the traffic volume than the one that addresses only the 
directional variation of the AADT. 

The most notable difference refers to the median of the absolute error in percentage of the 
first scenario, which decreases by 15% from the anisotropic case to the network distance 
case. Reductions in the RMSE of both scenarios and in the MedAPE of the second scenario 
range between 3% and 5%. However, the better performance of the network distances 
approach compared to that of Euclidean distances with isotropic semivariogram is 
emphasized: in both scenarios, the MedAPE is reduced by approximately 20%, while the 
RMSE is reduced by 13% and 10%, respectively, in the first and second scenarios. 
Furthermore, Pearson's linear correlation coefficient shows an increase in the 
proportionality of the original and estimated values. The 137% increase in the number of 
sampling points, from 143 to 339, also contributes to improving the estimates in all cases 
analyzed. For example, in the network distance approach, MedAPE and RMSE were reduced 
by 30% and 35%, respectively, and R increased by 16%. 

A MedAPE of 38% in the first scenario and 27% in the second, indicates that half of the 
database, that is, 71 and 169 points, respectively, had an absolute error in percentage lower 
than 38% and 27%. Considering that OK requires only the value of the variable of interest 
in spatial points, with respective geographic coordinates, this result is quite satisfactory. Chi 
and Zheng (2013), who also used OK with network distances to estimate the carbon 
footprint as a function of AADT, attained an absolute mean error of 76.11%, while this 
metric resulted in 41.37% and 54.17% in the present study, both considering network 
distances for the second and first scenarios, respectively. These errors are also smaller than 
five of the six case studies carried out by Selby and Kockelman (2013), whose variable of 
interest was also the AADT. Notwithstanding the explanatory variables, in five of the six 
situations analyzed and considering a validation sample, the authors found mean absolute 
errors varying between 55.8% and 63.1% with Euclidean distances, and 55.9% and 62.4% 
with network distances. This pattern was repeated in the calibration sample in two cases 
shown by the authors. Furthermore, the use of network distances had little or no positive 
influence on the results: the greatest reduction in the APE error was of approximately 3%. 
Zhang and Wang (2014) also compared a multivariate geostatistical approach with network 
and Euclidean distances, and observed an improvement of only 0.74% in the goodness-of-
fit measure used (the adjusted R2 of the models). In contrast, the results shown in Table 2 
point to improvements of 10% up to 20% in the applied error metrics.  

The absence, or little difference observed in the results of Selby and Kockelman 
(2013) and Zhang and Wang (2014), is probably due to the use of several explanatory 
variables in geostatistical modeling. In this case, it is assumed that the semivariogram 
is present in the residuals, and the excess of covariates can blur the spatial structure 
of the errors, making it difficult to accurately model the semivariogram. 
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Although the exponential semivariogram resulted as the only permissive model for 
geostatistical modeling, Table 1 showed that most of the studies that compared the fit of 
several variographic models demonstrated better performance of the exponential 
model. This result suggests that the exponential model may be the most suitable for 
modeling AADT. 

The maps in Figure 11 show the spatial variation of the Absolute Percentage Error of 
the network distance approach in both scenarios. Most of points have an error of up to 
60%, for the case with 143 points, and 30%, for the scenario with 339 points. The positive 
asymmetrical profile of the frequency of points by category again confirms the 
satisfactory results of OK. 

 
Figure 11. Estimate errors of network distances for both scenarios 

However, extreme errors are observed in the last two categories probably due to the 
great amplitude of AADT in both cases. Since OK assumes a constant local mean of the 
variable of interest, it fails to adequately model possible database outliers. However, this 
problem can be addressed by using robust semivariogram estimators (Cressie and 
Hawkins, 1980), which smooth the elongated tail of skewed distributions; or by including 
explanatory variables to the geostatistical modeling, such as: highway category, number 
of lanes, speed limit, population and jobs within a certain distance, among others. 

The outlier problem can also be seen in Figure 12, which presents the number of points 
whose AADT value fell within the defined intervals. In the first scenario, predictions were 
limited to the upper bound of 70,000 vehicles, but three points had an observed AADT 
higher than 70,000. In the second scenario, two points had an AADT higher than 90,000 
vehicles. However, none of the approaches used predicted values beyond this threshold. 

Figure 12 also confirms a tendency already shown in Table 2: results from network 
distances are clearly better than the Euclidean ones in the first scenario, but, in the second 
scenario, the anisotropic approach is seen as a competitive alternative. The frequency of 
estimates from network distances in the first scenario is closer to the real AADT frequency 
in most intervals up to 70,000. In the second scenario, the anisotropic approach had the 
best adjustment to the observed AADT frequency. 
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Figure 12. Frequency of points in each AADT interval for scenarios 1 (a) and 2 (b) 

In both scenarios, results from the anisotropic approach were very close to the real 
AADT frequency for volumes up to 10,000 vehicles. This result suggests that addressing 
the anisotropy of traffic data can be an interesting alternative for modeling and predicting 
low volume categories. 

Figure 13 illustrates the functionality of kriging by showing, on the left, the 339 
segments used in the geostatistical modeling of the second scenario (and respective 
original AADT) and, on the right, the 339 initial segments plus 27 unsampled segments of 
the National Road Traffic System, all with AADT estimated based on OK with exponential 
model and network distances. The segments in red could not be estimated due to the 
absence of neighbors within the range region. 

 

Figure 13. (a) Original AADT in 339 segments; (b) Estimated AADT in 366 segments. World Street Map source: 
Esri, HERE, Garmin, USGS, Intermpa, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, 

Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community. 

4.1. Validation results 

Figure 14 shows the spatial distribution of the calibration and validation samples of the 
first and second scenarios, together with the resulting empirical and theoretical 
semivariograms. In the first scenario, the calibration and validation samples had 100 and 
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43 points, respectively, while in the second one, the calibration and validation samples 
covered 237 and 102 road segments. 

 
Figure 14. (a) and (b) samples from the first and second scenarios, respectively; (c) and (d) Semivariogram 

obtained from the calibration sample of the first and the second scenarios 

For the validation analysis, each method step of the network case (Figure 5) was applied 
to the calibration samples of both scenarios and only the exponential model was used. In turn, 
Ordinary Kriging estimates were calculated through cross-validation for the calibration 
points. For the validation points, predictions were computed using the models obtained from 
the calibration samples and Equations 7-9. Table 3 summarizes the validation step results. 

Table 3: Results from each method step in the validation analysis 

Measure Sample 1st scenario 2nd scenario 
Moran index Calibration 0.180* 0.228* 
Lambda (Box-Cox transformation) -0.341 -0.298 
Maximum range with minimum eigenvalue bigger than zero (km) 432.180 144.500 
Actual range (km) 168.323 47.004 
MedAPE 

 
33.789% 22.786% 

Validation 42.491% 22.793% 
RMSE Calibration 13,161.542 8,888.296 

Validation 18,383.077 9,535.776 
R Calibration 0.733** 0.820** 

Validation 0.453** 0.772** 
Note: MedAPE, RMSE and R express, respectively, the Median of Absolute Percentage Error, Root Mean Squared Error and Pearson's linear 
correlation coefficient between original and estimated values.* pseudo p-value equals 0. ** is statistically significant at a 99% confidence level 
(p < 0.01, one-tailed). 
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Since the range parameters were smaller than the maximum range which obtained a 
minimum eigenvalue bigger than zero, the result of the exponential model was permissive for 
both scenarios. Using the calibration samples of 100 and 237 points yielded better goodness-
of-fit measures compared to their original database (Table 2), probably due to the higher 
spatial autocorrelation found in the samples, as shown by the Moran index results. 

Results from the validation sample of the second scenario were also consistently 
better than the results from the first scenario using the complete database, and the 
anisotropic case of the second scenario (Table 2). The performance of the validation 
sample of the first scenario was comparable to the Euclidean approaches of the first 
scenario complete database. 

Figure 15 shows the frequency of points in each AADT interval for the validation 
samples. Good results from the first scenario can be seen in the AADT range from 20,000 
to 40,000 vehicles. In the second scenario, the first range (from 0 to 10,000 vehicles) and 
the range from 30,000 to 40,000 vehicles also showed good results.  

For all scenarios considered, using both the complete database and the 
calibration/validation samples, the p-value from the Mann-Whitney test was greater than 
0.05. Thus, the null hypothesis of the same distribution between observed and predicted 
values is accepted in all cases analyzed. The following subsection provides support for the 
decision-making on whether to use network distances or anisotropy. 

  
Figure 15. Frequency of points in each AADT interval for the validation samples of the first  

(a) and second (b) scenarios 

4.2. Should we account for network distances or anisotropy in the spatial 
estimation of AADT? 

The boxplots in Figure 16 illustrate the differences in the ratio between network and 
Euclidean distances in scenarios 1 and 2. Figure 16a was prepared based on all pairs of 
points in each scenario. In Figure 16b, only the pairs whose distance was within the range 
region were selected, that is, which presented spatial autocorrelation and had influence 
on the estimate of the neighboring point in the cross-validation step. 
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Figure 16. Ratio between network and Euclidean distances considering all pairs of points (a) and only pairs of 

points less distant than the range parameter (b) 

As expected, the descriptive measures are smaller for the second scenario compared to 
the first, especially with regard to the points that can be selected for kriging. The increase 
in the density of points available for spatial interpolation tends to reduce network 
distances and make them closer to Euclidean distances. In the first scenario, there were 
7.16 count locations per 1,000 km of highways, while in the second scenario, the segment 
midpoints represented 16.97 locations/1,000 km. 

When approximating the network and Euclidean distances, the kriging estimates 
obtained by the two approaches also start to be more similar. Case studies using urban 
travel demand variables (boarding, alighting and loading along bus lines) have resulted in 
little or no improvement in the use of network distances compared to the traditional 
Euclidean distance (Marques and Pitombo, 2021b, 2021c). The study by Zhang and Wang 
(2014), whose variable of interest was the number of boardings at subway stations, also did 
not show considerable positive differences in the use of network distances. However, the 
authors used a multivariate interpolator and the independent variables were able to explain 
almost all the variance of boardings, leaving little variance for the spatial interpolation. 
Thus, little improvement was observed in the spatial model compared to the non-spatial 
model. When kriging is applied to the residuals of a multivariate model, it is possible that 
the explanatory variables can incorporate the spatial dependence of the regionalized 
phenomenon and account for a significant part of the variance of the dependent variable. 
Thus, the differences between the use of network and Euclidean distances are in fact subtle. 
This may also have been one of the reasons responsible for the lack of improvement in the 
use of network distances in the study of Selby and Kockelman (2013). 

As the density of data on traffic volumes along the network is lower than that of urban 
variables, AADT presents better estimates when using network distances. However, Table 
2 shows that the improvement observed in the second scenario is smaller than in the first 
scenario. Thus, the contribution of anisotropy appears to be competitive with the use of 
network distances. As reported by some authors (Selby and Kockelman, 2013; Wong and 
Kwon, 2021), obtaining network distance matrices is computationally expensive, and also 
requires a perfectly connected network without topological faults to calculate the shortest 
paths. The results found in the present article, together with those of previous studies, 
suggest that, as the density of count locations increases, incorporating anisotropy may be 
a viable alternative to the use of network distances, if the main intention is only to provide 
accurate estimates. In this context, the greater the number of sampled segments, the 
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greater the order of the network distance matrix, and its calculation can become a barrier 
to spatial interpolation. 

However, as shown in Figure 9 and Figure 10, when considering the spatial continuity 
along the network where the regionalized phenomenon occurs, the use of network 
distances better represents the spatial behavior of AADT. Range parameters measured 
from straight-line distances do not correspond precisely to the real region of influence of 
AADT at a given point, information that can only be measured by semivariograms with 
network distances. Thus, if there are resources available to obtain network distances, such 
approach should be prioritized. Otherwise, one should not neglect the anisotropy of 
AADT. An alternative to spatial interpolation with network distances using a lower-order 
matrix can be found in Ver Hoef (2018). 

5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE DEVELOPMENTS 

Noting that the traffic volume usually shows spatial dependence, the main objective of 
this study was to estimate the Annual Average Daily Traffic on São Paulo highways based 
on a spatial interpolator known as Ordinary Kriging. This technique requires only the 
values of the variable of interest in segments spatially sampled to estimate the traffic 
volume in segments without this data. The São Paulo highways were used as a case study 
with two types of distance: the traditional Euclidean distance, and distances along the 
road network. A third approach analyzed the effect of anisotropy on the spatial modeling 
of AADT and, consequently, on the calculated estimates. 

The results showed that the use of network distances more adequately represents the 
spatial behavior of AADT than the traditional approach with straight-line distances, and 
surpassing the goodness-of-fit measures of the anisotropic case. The gains when using 
network distances as opposed to straight-line distances are about 10% to 20%. Although 
the scenario with the highest number of points resulted in the best estimates, the case 
with only 143 counting locations was also satisfactory when compared to previous 
studies. In this scenario, half of the estimates had an error of less than 38%, while, for the 
case with 339 points, the median error was approximately 27%. 

Although the accuracy of the interpolator decreases in cases of low density of counting 
stations, in regions with scarce road network the differences between Euclidean and 
network distances are even greater and the use of distances along the road network is 
fundamental to improve the results. As the density of count locations increases, obtaining 
the network distance matrices is computationally expensive, which may become a limiting 
factor for spatial interpolation. The results obtained in the present article and in previous 
studies suggest that if there are no resources to calculate the shortest paths, kriging 
estimates can still benefit from addressing anisotropy. The directional variation of AADT, 
overlooked in previous studies, was also shown to influence the results. 

In locations with low density of count locations, it is necessary to verify if, due to the 
low number of samples, the interpolator is searching for neighbors outside the range 
region (𝑎𝑎) to calculate the estimates. This phenomenon can impair the performance of the 
interpolator. In the border regions of the spatial field, which usually suffer from this 
problem, it may be necessary to include data from adjacent geographic units. Information 
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collected from other categories of roads can also be tested, especially in cases such as 
Figure 13b, in which the long length of two segments caused the respective midpoint to 
be at a distance from the nearest neighbor greater than the range. Adjustments in 
separating segments also appear as a possible solution to this problem. 

It is important to remember that Ordinary Kriging is a univariate interpolator. As it does 
not depend on explanatory variables, its potential to model variables with a high range of 
variation is limited. Thus, in the case of AADT, it is customary to divide such databases into 
categories of traffic volume before advancing to geostatistical modeling. Similarly, OK is also 
not suitable for estimating AADT in the medium and long term, requiring the application of 
other models, such as Universal Kriging and Regression-Kriging. 

In future work, the sensitivity of kriging estimates to the density of samples per 
kilometer of network can be analyzed in depth. Based on the use of several scenarios, it 
can be verified to what extent the use of network distances is more advantageous than 
anisotropic analysis, taking into account the time and resources for processing the 
network distance matrices. 

In summary, the present article contributes to a quick and economical modeling of 
AADT to support estimating the traffic volume of not only segments of federal highways, 
but also other categories, since kriging allows calculating the variable in any point in 
space. An important contribution refers to the fact that since AADT has a remarkable 
spatial dependence, confirmed by the Moran index and semivariograms, its modeling can 
be strongly benefited by spatial approaches, especially those that use network distances. 
One advantage of using geostatistical interpolators is the possibility of incorporating 
anisotropy into the modeling. As the geostatistical modeling with network distances or 
anisotropy is available on open source and/or free computer programs, it can be 
successfully replicated to other databases. 
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