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ABSTRACT
Urban Air Mobility (UAM) is an emerging form of transportation that is expected to introduce 
novel flight networks into already busy and complex airspace surrounding major cities and 
metropolitan regions. This work provides a data-driven approach to modeling the urban 
airspace availability for emerging UAM operations toward supporting their safe and efficient 
integration. Using historical flight tracking data, clustering analysis is first performed to learn 
the current patterns of urban airspace use by conventional traffic and identify the airspace 
volumes that are least constrained and best accessible for UAM flights. Meteorological data 
is then incorporated into the machine learning framework to create a probabilistic model 
of the spatiotemporal distribution of conventional traffic flows. This model enables the 
prediction of active airport arrival/departure patterns and the resulting airspace availability 
for UAM given dynamic operational conditions. The data-based approach is demonstrated 
for the São Paulo metropolitan area, which is the largest in Brazil and a promising market 
for UAM. It allowed for a high-fidelity characterization of the São Paulo urban airspace use 
patterns as well as for accurate predictions of the available airspace for UAM, bringing novel 
insights and capabilities in support of dynamic and efficient urban airspace management.
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RESUMO
A Mobilidade Urbana Aérea (UAM) é uma modalidade emergente de transporte urbano que 
deverá introduzir novas rotas de voo no já ocupado e complexo espaço aéreo das principais 
cidades do mundo. Este artigo oferece uma abordagem baseada em dados para modelar 
a disponibilidade do espaço aéreo urbano para operações UAM, visando servir de suporte 
técnico à sua integração segura e eficiente. Utilizando dados históricos de rastreamento de 
voos convencionais, um processo de clusterização é realizado para aprender padrões de 
uso do espaço aéreo urbano pelo tráfego aéreo convencional, bem como para identificar 
as porções do espaço aéreo menos utilizadas por eles e, portanto, mais acessíveis para 
voos UAM. Em seguida, dados meteorológicos são incorporados para criar um modelo 
probabilístico da distribuição espaço-temporal dos fluxos de tráfego aéreo convencional. 
Este modelo possibilita a previsão de procedimentos ativos de chegada e de saída dos 
principais aeroportos da cidade e, consequentemente, a obtenção da disponibilidade 
resultante do espaço aéreo urbano para operações UAM. O modelo é aplicado à região 
metropolitana de São Paulo, que, por ser a maior do Brasil, será um mercado promissor para 
a implementação de UAM em um futuro próximo. Ademais, nossa abordagem permite uma 
caracterização de alta fidelidade dos padrões de uso do espaço aéreo urbano de São Paulo, 
bem como previsões precisas do espaço aéreo disponível para uso por novas operações 
UAM, permitindo a obtenção de insights e a compreensão de capacidades inovadoras em 
suporte ao gerenciamento dinâmico e eficiente do espaço aéreo urbano.
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1. INTRODUCTION
Every day, billions of people around the world have the basic need of moving around cities to 
commute to work or accomplish personal duties. Some of them travel dozens of miles through 
clogged roads to reach their destination, spending more time than desired. This is a common 
reality especially in large metropolitan regions that face significant levels of transportation 
congestion on the ground. In São Paulo, for instance, research performed by the Brazilian Institute 
of Public Opinion and Statistics (IBOPE, 2014) estimated that the average citizen spends up to 
167 minutes daily in road traffic while commuting, with 70% of the interviewees considering the 
traffic situation bad or very bad. As a result, these megacities have been increasingly affected by 
congestion externalities, such as reduced productivity, economic losses and environmental impacts.

Urban Air Mobility (UAM) is an emerging concept of transportation of people and cargo that 
is expected to alleviate congestion on the ground and reduce the costs of traveling within cities 
by leveraging novel types of aircraft that are safe, quiet and efficient, known as Electric Vertical 
Takeoff and Landing vehicles (eVTOL), to provide regular and on-demand transportation services. 
A 74 billion dollar UAM market is expected to rise in the next decade, with up to 23,000 eVTOL 
vehicles operating globally (EmbraerX, 2019).

High demand for UAM is expected to emerge in busy urban clusters (Goyal et al., 2021). This high 
volume of operations will lead to new flight networks, notably in low altitude layers (Vascik et al., 
2019). However, the urban airspace above highly populated cities is already organized into dense 
route structures that properly accommodate existing conventional traffic, under both Instrument 
Flight Rules (IFR) and Visual Flight Rules (VFR). In large metropolitan regions served by multi-
airport systems (metroplexes), the terminal airspace structure can be particularly complex due to 
the need to prevent conflicts between aircraft flying the procedures from different closely located 
airports. This often results in longer departure and arrival routes, which ultimately translates into 
delays and lower fuel efficiency. Hence, the introduction of novel UAM operations to those busy 
airspace becomes a great challenge.

Several stakeholders have worked towards the definition of a Concept of Operations (ConOps) 
for UAM integration into urban airspace. Since legacy ATM systems are already operating near 
capacity in busy terminal areas and are unlikely to be able to handle such a rise in traffic in the 
short term, UAM operations are expected to be initially integrated into urban airspace without 
interfering with conventional operations and compromising current safety and efficiency levels 
(EmbraerX, 2019; FAA, 2020; Lascara et al., 2020). To minimize the impacts on current ATM, one 
possible approach is to identify airspace volumes that are procedurally separated from existing 
published flight procedures, i.e., for which the minimum standard separation requirements are 
planned to be automatically met without requiring Air Traffic Control (ATC) services from the 
legacy ATM system (Lascara et al., 2020; Vascik et al., 2019). Given the high variability in how 
published procedures are actually flown due to tactical ATC interventions, aircraft performance, 
among other factors, such identification of available airspace volumes ideally should be backed 
by operational data. The increasing availability of detailed aircraft surveillance data from open 
sources is certainly an ally in this process, allowing for precise mapping of current patterns of 
airspace use.

Another potential approach for UAM integration is to adopt a dynamic airspace management 
solution, which leverages the dynamics of conventional traffic flows, as proposed in the ConOps 
documents (EmbraerX, 2019; FAA, 2020; Lascara et al., 2020). To allow for increased accessibility 
of UAM operations in controlled airspace and enable its scalability, the allocation of the urban 
airspace and the activation and deactivation of routes for UAM should be done dynamically, in 
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response to changes in conventional air traffic patterns due to operational conditions. In that 
case, the ability to predict airspace availability given the dynamics of conventional air traffic 
operations is required for decision-making. Yet, limited studies have attempted to address this 
problem towards providing such operational decision support.

This study presents a data-driven approach to modeling the urban airspace availability for 
emerging air mobility operations. We leverage machine learning methods to perform descriptive 
analysis and predictive modeling of the current patterns of urban airspace use by conventional 
air traffic. The resulting data-driven models allow for the identification of the airspace volumes 
that are least constrained and best accessible for UAM flights. Moreover, they provide the basis 
for predictive tools in support of dynamic urban airspace management.

In order to demonstrate the use of the modeling proposed, we study the case of São Paulo, which 
is the main financial and economic center of Brazil and one of the largest cities in the world, with 
a population of about 12 million residents (IBGE, 2023). The economic strength and the routine 
high levels of ground traffic congestion have made the use of helicopters very common for urban 
mobility within the São Paulo region. The Brazilian Association of Helicopter Pilots (Abraphe, 
2019) estimated that approximately 1,300 helicopter landings and takeoffs are performed daily 
in the city of São Paulo. Therefore, it is expected to be a promising market for UAM.

2. LITERATURE REVIEW
The topic of urban airspace design and management for integration of emerging UAM operations has 
been the subject of numerous studies. Different authors have addressed the matter using different 
techniques, from geometric approaches supported by published procedures and topographic 
data, to flight trajectory data analytics based on the application of machine learning algorithms 
on Automatic Dependent Surveillance-Broadcast (ADS-B) data.

Vascik et al. (2019) developed a geometric framework that used only static, publicly available 
information, evaluated in multiple scenarios. The authors defined four ConOps scenarios and 
studied seven airspace constructs, such as terrain clearance, airports airspace clearance, special 
flight rules areas, and others. Then, geometrically combining all constructs, they were able to 
estimate the airspace availability for UAM under their specific hypotheses and scenarios.

The fashion of how topography and urban infrastructure affect airspace availability is a theme 
of great importance because complex and large cities are exactly the environment in which 
eVTOLs are expected to operate. This line of research has also been addressed by Cho and Yoon 
(2018) and Mohamed Salleh et al. (2018). The first proposed a topological analysis framework 
to identify free and usable airspace in a 3D environment filled with geometric elements; the 3D 
environment was the urban environment, and the geometric elements were buildings, skyscrapers 
or any other physical structures. The second had similar objectives, but more oriented towards 
the establishment of urban route networks.

Regarding data-driven approaches, most of them resort to flight tracking data gathered from 
surveillance systems. Vascik and Hansman (2019) developed a statistical approach based on 
percentile metrics defined over data to evaluate airspace availability. The authors used commercial, 
rotary-wing and general aviation flight data from Airport Surface Detection Equipment - Model 
X (ASDE-X) to build the concept of containment boundaries: regions around multiple observed 
flight trajectories delimiting keep-out regions where UAM must not enter. The containment 
boundaries defined in Vascik and Hansman (2019) were used by Vascik and Hansman (2020) as 
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inputs to create airspace cutouts especially designed to procedurally segregate UAM operations 
from conventional traffic with a special focus on ATC workload.

Burke (2019) used Automatic Dependent Surveillance-Broadcast (ADS-B) to evaluate manned 
air traffic below 500 ft AGL within a 5 miles radius from John Wayne Airport (SNA). The author’s 
objective was to offer a new paradigm for UAS safety near airports. He concluded that most of the 
volumes of highly populated airspace near airports were located at some distance from the traffic 
patterns, suggesting that regions very close to airports might be available for UAS.

Murça (2021) addressed the problem of identifying available volumes of urban airspace for 
UAM operations using ADS-B data of arriving and departing traffic at Congonhas airport, the most 
central airport in São Paulo, Brazil. The author also analyzed the impact of adopting different lateral 
separation buffers (ATC-assumed minimum lateral separation) to procedurally separate UAM 
from conventional traffic, and the differences between integrating UAM dynamically or statically.

It is evident that understanding current air traffic flows is a major priority to properly assess 
urban airspace availability. To this end, we can leverage a significant line of research dedicated 
to exploiting large-scale aircraft tracking data to detect, better understand and anticipate traffic 
flow patterns in the airspace.

Clustering has been a prominent Machine Learning (ML) technique used to approach this 
pattern recognition problem. A very promising type of clustering algorithm commonly applied to 
flight trajectory datasets are density-based. Many authors have used the renowned Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithm with different purposes (Gariel, 
Srivastava and Féron, 2011; Liu et al., 2017; Murça et al., 2018, 2020; Murça, 2021; Eerland, Box 
and Sóbester, 2016; Olive and Morio, 2018; Olive et al., 2021; Vascik and Hansman, 2019). DBSCAN 
works well with noise and is not limited to globular shapes, being able to discover trajectory 
clusters of any form. In a busy TMA environment, plenty of operational artifices generate noise 
(ATC vectoring, holding patterns, go-around procedures, and so on), turning DBSCAN suitable for 
the identification of trajectory patterns in the presence of these noise observations. The algorithm 
can also deliver satisfactory results without the need for the user to inform the number of clusters 
beforehand.

The analysis of the existing scientific literature reveals that while numerous studies have 
succeeded in identifying spatial and temporal patterns from flight trajectory data, only a handful 
have leveraged this knowledge to predict traffic distribution. For instance, knowledge about 
spatial trajectory patterns was used to predict route choices as well as operationally acceptable 
reroute options by Marcos, García-Cantú and Herranz (2018) and Evans and Lee (2019). Murça and 
Hansman (2018) developed a trajectory data analytics framework to identify and predict traffic 
flow patterns, resulting from coupled airport runway and terminal airspace configurations, in a 
metroplex environment. The study did not consider the forecast of the spatial distribution of air 
traffic within the predicted patterns, however.

This paper advances upon this particular research direction by introducing data-driven models 
focused on identifying and forecasting the spatiotemporal distribution of conventional air traffic 
in busy urban areas and the resulting airspace availability for emerging UAM operations.

3. METHODOLOGY
We developed a machine learning framework to identify and predict urban airspace availability 
for UAM operations. First, we process raw flight tracking data to get it prepared for a clustering 
analysis aimed at identifying the main conventional traffic patterns flown in the urban terminal 



TRANSPORTES | ISSN: 2237-13461 5

Ribeiro and Murça Volume 32 | Número 1 | e2896 | 2024

airspace. Then, the knowledge of actual traffic patterns is combined with weather data to learn a 
probabilistic model capable of predicting the traffic patterns that are active, their spatial confidence 
regions and the resulting airspace availability for UAM at any given time given a weather forecast. 
The framework is summarized in Figure 1 and detailed in this section.

 

Figure 1. Machine learning framework for urban airspace availability modeling.

3.1. Region of interest

In this work, we study the case of São Paulo, which is the largest city in Brazil and one of the largest 
in the world, with a population of about 12 million residents (IBGE, 2023). It is part of the São 
Paulo Metropolitan Region, which consists of 39 municipalities and has approximately 23 million 
inhabitants, being the main financial and economic center of Brazil.

The São Paulo Metropolitan Region is served by two major commercial airports, São Paulo/
Congonhas Airport (CGH) and São Paulo/Guarulhos International Airport (GRU). CGH is the 
city airport, located 6 miles from downtown São Paulo. GRU is located in the neighboring city of 
Guarulhos and is 17 miles from downtown São Paulo. GRU and CGH are the busiest airports in 
Brazil, with an average of 817 and 610 operations per day, respectively (CGNA, 2019).

Our Region of Interest (ROI) is therefore the urban airspace surrounding these airports, which 
is contained in the São Paulo TMA. We define the ROI as two overlapped cylinders of 40 nautical 
miles (NM) radius respectively centered GRU and CGH airports’ centroids. Figure 2 shows a map 
of the ROI and its surroundings and indicates the location and the orientation of CGH and GRU 
runways. CGH runways are oriented northwest to southeast and are denominated 17L/35R and 
17R/35L, being the latter more frequently used due to its dimensions and available IFR procedures. 
GRU runways are oriented west to east and are denominated 10L/28R and 10R/28L, the first 
being used mainly for takeoffs and the latter for landings.
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Figure 2. Region of interest.

3.2. Data

3.2.1. Flight tracking data

The emergence of ADS-B turned incredibly large amounts of flight tracking data easily accessible 
to air traffic managers, flight planners, researchers and others. ADS-B is a surveillance technology 
incorporated into regular transponder units in which an aircraft automatically broadcasts its 
navigation data (speed, altitude, heading etc.) in regular intervals. This work uses ADS-B data 
gathered inside the São Paulo TMA to map arrival and departure flows at CGH and GRU and 
understand the behavior of commercial air traffic inside the urban airspace. For this, we rely 
on the OpenSky Network (Schäfer et al., 2014) databases. The OpenSky Network is a non-profit 
association that provides open access to real-world air traffic data to the public for scientific 
purposes. Volunteers and other supporters around the world collect raw flight tracking data from 
their own ADS-B receivers and share it with the Network.

In this study, we use 30 days of flight tracking data gathered via OpenSky’s REST API. The dataset 
covers the period of November 2019 -- last month with regular demand levels right before the holiday 
season and the Covid-19 pandemic -- and consists of almost 1 million observations, corresponding 
to around 15,000 flights. The dataset contains, among other attributes, information about aircraft 
callsigns, destination and origin airports and, most importantly, trajectory data (latitude, longitude 
and altitude) for each timestamp. The acquisition rate is approximately 6 records per minute.

Data pre-processing was conducted to filter the observations inside the terminal area (all 
trajectory observations not further than 40 NM from the airport of operation and not higher than 
19,500 ft were filtered) and to eliminate flights with incomplete or noisy trajectory data based 
on sanity checks. Figure 3 presents a visualization of the filtered flight tracking data gathered 
from OpenSky Network plotted over the ROI, separately for CGH and GRU. The black straight lines 
represent the airports’ runways.
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Figure 3. Filtered flight tracking data in the ROI.

The aircraft tracking dataset was also preprocessed to be structured as a flight trajectory dataset. 
In the raw dataset, each object (line) is a single observation of some flight at a given timestamp. 
We changed the structure so that each flight trajectory was represented by a single line. Thereby, 
each object of the new dataset is a trajectory and the attributes are the sequential position data 
(latitude, longitude and altitude). Moreover, the number of observations per flight can vary a lot, 
depending on the time spent inside the ROI. Thus, in order to make the new dataset suitable for 
clustering, it was necessary to resample all data so that each object was represented with the 
same number of attributes.

3.2.2. Meteorological data

Meteorological data for the same 30-day period of the flight tracking dataset was used to learn 
the probabilistic model. The dataset contains information about wind, ceiling, visibility and 
precipitation conditions. These meteorological parameters are listed in Table 1, along with their 
source of acquisition and the area covered. Incorporating these inputs into our model allows for 
understanding the distribution of air traffic under variable weather conditions, which is crucial 
for developing an accurate and reliable prediction model.

Table 1: Meteorological parameters of interest.

Meteorological 
Parameter Data Source Area Covered

Wind [knots] METAR Airport

Ceiling [f t] METAR Airport

Visibility [m] METAR Airport

Convective precipitation 
rate [kg/m2s]

NOAA-NCEP Any lat/lon pair

The first three parameters were obtained from historical Meteorological Aerodrome Report 
(METAR) messages for CGH and GRU, which were collected via the REDEMET’s API (REDEMET, 
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2022). METAR are coded and standardized messages issued by local aviation authorities to inform 
aircraft about an airport’s actual meteorological situation, including wind, ceiling and visibility. 
Hence, we have this information for each airport of interest (separately for CGH and GRU) at each 
timestamp of the flight tracking database.

While the visibility parameter is used just as reported, the ceiling parameter is defined as the 
height of the lowest layer of Broken (BKN) or Overcast (OVC) clouds. The wind is broken down 
into two different parameters: headwind and crosswind. Since CGH and GRU have runways 
oriented in the magnetic bearings of 169º/349º and 095º/275º, respectively (as of May 2023), 
some computation is needed before feeding the flight tracking database with the wind components.

Although accurate and widely available, METAR messages only provide information about 
the weather observed at a particular airport and fail to represent a wider spatial region. Those 
messages may be enough to understand patterns of runway use, but give poor information when 
one needs to study the weather along large regions as our ROI, which is about 40 NM wide. In order 
to fill this gap, we resort to a numerical forecast model called National Centers for Environmental 
Prediction (NCEP) Reanalysis (Kanamitsu et al., 2002).

The National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Laboratory (PSL) 
conducts weather, climate and hydrologic research to advance the prediction of water availability 
and extremes. The NCEP Reanalysis is a project that combines historical observations from various 
sources, including satellites, weather balloons, ships, and buoys, with computer modeling to create 
a comprehensive record of past weather and climate conditions. The Reanalysis data covers the 
entire globe and ranges decades of observations, which provides a consistent and reliable dataset 
useful to study climate variability and change. It contains data from various numerical forecast 
models, including the renowned Global Forecast System (GFS) (NOAA, 2021).

The NCEP Reanalysis data includes a wide range of variables, such as temperature, pressure, wind, 
humidity, and precipitation. In our case, we were especially interested in the variable called cprat.
sfc, which is the convective precipitation rate, given in kg/m2s. The reason is that the convective 
precipitation rate combines both the amount of rain and the amount of convective/cumuliform 
clouds, which are two parameters related to microweather and which have the utmost importance 
for determining whether some airspace volumes should be open or closed to small aircraft as UAM.

Since the convective precipitation rate data is provided for every 1.75 degrees of latitude 
and longitude, we made a bivariate interpolation in order to find values of cprat.sfc for any 
possible lat/lon pair, especially for those observed in the flight tracking database. As an example, 
Figure 4 presents values of cprat.sfc in kg/m2s as a plot on a map for a single execution of the 
NCEP Reanalysis, specifically November 15th at 1200Z. The nine circles on the map are the lat/lon 
pairs that the model actually computes, hence bivariate interpolation was necessary to determine 
the values of convective precipitation rate inside the entire ROI, as mentioned. Since the NCEP 
Reanalysis provides four executions per day for cprat.sfc, we were able to feed its outputs to our 
flight tracking database adequately at the timestamps needed and to interpolate its results to 
determine accurate values of convective precipitation rate for each spatial position in the database.

Being fed with all the meteorological information detailed in this subsection, along with the 
results of the clustering phase, the probabilistic model is capable of learning the spatial distribution 
of air traffic given the weather conditions.
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Figure 4. Visualization of the precipitation parameter cprat.sfc for a single execution of NCEP, in kg/m2s.

3.3. Trajectory clustering analysis
After preprocessing the flight tracking data, we performed trajectory clustering in order to identify 
the most common spatial traffic patterns in the ROI. The terminal airspace is structured with several 
arrival and departure standard procedures that should be accomplished by flight operators to 
navigate between the airport and the enroute airspace. These procedures organize the traffic within 
the airspace surrounding the airport in a more manageable way for air traffic controllers, ensuring 
appropriate safety separations between aircraft coming from different directions and between 
aircraft and terrain/obstacles. Yet, for many reasons, standard procedures are not performed exactly 
as defined in aeronautical charts. A busy TMA usually makes the actual flight trajectories prone to 
deviations from the planned flight procedures since the high traffic volume results in the constant 
use of ATC vectoring, holding patterns and direct heading clearances to avoid traffic conflicts and to 
increase global efficiency. Therefore, air traffic flows tend to exhibit a natural variation.

To model such spatial variation from operational data, the first step of our framework was 
to perform a clustering analysis of arrival/departure flight trajectories in order to identify the 
main traffic patterns in the ROI. Clustering is an unsupervised learning method used to identify 
groups of similar observations in a dataset without any prior knowledge. After careful study, as 
detailed in section 2, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 
algorithm was chosen for the clustering task. The ability to handle noise and non-convex clusters 
and the robustness when working with an unknown number of clusters were key factors that led 
to this choice, besides the success achieved by other authors when using DBSCAN for clustering 
trajectory datasets. It is worth mentioning that the ATC artifices described above sometimes can 
result in significant trajectory deviations and abnormal profiles that can be considered noise, 
which highlights the importance of using a clustering algorithm that can deal with it.

DBSCAN is a clustering algorithm that seeks data samples of high density and expands clusters 
from them. Naturally, it is a density-based algorithm and may not work well with very sparse 
trajectories, such as an unusual route (which would be labeled as noise). DBSCAN works with two 
input parameters: eps and min_samples. Eps, or epsilon, or ϵ is the maximum distance between two 
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samples for one to be considered inside the neighborhood of the other. Min_samples is the minimum 
number of samples in a neighborhood required for a point to be considered as a core point and 
start a cluster. After running tests with different parameter values and performing visual validation 
of the clustering results, we selected the input parameters shown in Table 2. The visual validation 
aimed to ensure that trajectories from distinct procedures were not merged into one cluster and 
that trajectories following the same procedure were not split into multiple different clusters.

Table 2: DBSCAN parameters used for clustering.

CGH DEP CGH ARR GRU DEP GRU ARR

eps 1.0 1.2 1.5 2.0

min_samples 10 10 15 20

3.4. Probabilistic air traffic model
Once the clustering process is done and the air traffic flow patterns are identified, the next step is 
to learn a probabilistic model of the spatiotemporal distribution of air traffic that can be used to 
make predictions of active traffic patterns and the resulting airspace availability for UAM based 
on dynamic operational conditions such as weather.

For this, the trajectory clusters identified with DBSCAN were modeled in the form of a Gaussian 
Mixture Model (GMM) (McLachlan and Basford, 1988). We assume that the variability within traffic 
patterns can be modeled with a probability density function given by a weighted sum of Gaussian 
densities. Each Gaussian density is referred to as a component of the mixture and it models a 
particular trajectory cluster, i.e., the distribution of the traffic within a particular procedure. 
The GMM is mathematically defined as follows from Equation 1 to Equation 7:

( ) ( )
1 1

( | ) ; ,
K K

y y y y
y y

p X p X Y y Xπ π µ
= =

= = = Σ∑ ∑ 
    (1)

X is a multivariate random variable that represents the aircraft trajectory and a specific weather 
condition; it results from concatenating two vectors: XT, which contains the trajectory information, 
and XW, which contains the weather information; π are the mixture weights; K is the number of 
clusters (patterns, Gaussian components); µ is the mean vector of the Gaussian density that models 
the yth procedure; Σy is the covariance matrix of the Gaussian density that models the yth procedure.

Fundamentally, Gaussian component weights cannot be individually greater than one and sum 
up to one:

0 1yπ≤ ≤     (2)

1

1
K

y
y

π
=
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    (3)

The multivariate variable X is composed of the vectors XT and XW. The former contains flight 
trajectory information (a set latitude and longitude values), and the latter contains weather 
information (specifically wind, ceiling, visibility and a numerical forecast of precipitation). We can 
expand them as follows:
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   T WX X X=          (4)

   T lat lonX X X=        (5)

            W hw cw ceil vis convpX X X X X X =  
    (6)

Xlat and Xlon are the trajectory vectors describing the time series of latitude and longitude, 
respectively; xhw and xcw are meteorological variables describing headwind and crosswind 
component values at the time of landing/takeoff for arrival/departure flights, respectively; xceil  and 
xvis are meteorological variables describing ceiling and visibility at the time of landing/takeoff for 
arrival/departure flights, respectively; Xconvp is a meteorological vector describing the convective 
precipitation rate along the trajectory.

The weather vector XW  contains meteorological features that are expected to cause aircraft to follow 
a particular flight procedure and to impact the spatial variability within the procedure. Headwind 
and crosswind components are the primary determinants of the active runway configuration and 
procedures in use in a given period of time. Moreover, the weather condition in terms of ceiling, 
visibility and precipitation often affects the conformance of flight trajectories, potentially impacting 
the spatial distribution of the traffic within the procedure. Therefore, these variables are intended 
to capture the influence of weather on how flight procedures are actually flown.

After the model estimation, we apply it to make predictions of active procedures, their spatial 
traffic distribution and the resulting airspace availability given the meteorological conditions. This 
is accomplished by the computation of marginal and conditional densities. Equation 4 expresses the 
probability of occurrence of the yth procedure given known weather conditions. Bayes’s theorem 
is used to calculate that from the marginal distribution of weather conditions XW given the yth 
procedure, which is Gaussian with mean vector µy,W  and covariance matrix Σy,WW, as in Equation 8. 
This allows us to express the probability of occurrence of the yth procedure given input weather 
conditions as in Equation 9.
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    (9)

To model the spatial distribution of air traffic for a known weather condition, we need to compute 
the conditional probability distribution of aircraft trajectories XT given input meteorological conditions 
XW for the yth procedure. Bishop and Nasrabadi (2006) shows that this probability distribution 
is Gaussian with mean vector *

yµ  and covariance matrix *Σy , as expressed by Equations 10 to 14.

( ) ( )* *| ~ ,T W y yX X Y y µ= Σ      (10)
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Finally, we can use the marginal and conditional densities to forecast active procedures and their 
spatial confidence regions. Equation 15 defines the set S of procedures forecast to be active for 
a given probability threshold γ. Equation 16 expresses the confidence region Ry of the spatial 
distribution of air traffic for a significance level α for each active procedure y.

{ }*: yS y π γ= ≥     (15)

( ){ }: | , 1y T T WR X p X X Y y α= = = −     (16)

4. RESULTS AND DISCUSSION

4.1. Identification of current air traffic patterns in the urban airspace
The first step of the machine learning framework was the identification of the current patterns 
of urban airspace use by conventional air traffic. The flight trajectory clustering analysis was 
executed with the DBSCAN algorithm separately for each São Paulo airport and type of operation 
(departures/arrivals). Table 3 summarizes the results of the clustering analysis, presenting the 
number of clusters identified and the percentage of data noise encountered for each airport arrival/
departure traffic flow. As an example, six different trajectory clusters were identified for flights 
departing from CGH, as shown in Figure 5. Figure 6 shows the percentage of flights in each cluster 
identified. The departure patterns were found to be mainly concentrated to the west and to the 
east, with an empty space in the northern and southern sectors. This is a result of the procedural 
separation between departing and arriving traffic. The clustering analysis for CGH arrival trajectories 
revealed that the arrival patterns are mainly concentrated to the north and to the south. Overall, 
the clustering results for CGH departures were clean and did not present much dispersion. Lastly, 
it is worth noting that clusters 3 and 5 were mainly composed of flights performing the busy São 
Paulo - Rio de Janeiro route, together with some flights bound to the northeast.

Table 3: Clustering results.

Flow # clusters Noise

CGH DEP 6 10.3%

CGH ARR 6 10.2%

GRU DEP 6 12.1%

GRU ARR 7 14.9%
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Figure 5. Trajectory clusters identified for CGH departures.

Figure 6. Distribution of flight trajectories by cluster for CGH departures.

4.2. Descriptive analysis of the air traffic spatial distribution

After the clustering analysis, a GMM was estimated for each airport and type of operation based on 
the traffic patterns identified. The GMM allowed us to examine the spatial distribution of air traffic 
inside each cluster; for a given altitude layer, a spatial confidence region was determined for each traffic 
pattern. These spatial confidence regions indicate the airspace volumes where conventional air traffic 
is likely to be present. We analyzed three different confidence levels – 90%, 95% and 99% – and two 
different altitude layers – ground to 3,000 ft AGL and ground to 1,500 ft AGL.

Figures 7 and 8 display the confidence regions of each trajectory cluster for the three different 
confidence levels considered. The confidence regions for CGH departure patterns are drawn in red 
color, CGH arrival patterns are shown in green color, GRU departure patterns are displayed in purple 
color and GRU arrival patterns are shown in orange color. As expected, the higher the confidence 
level, the larger the spatial confidence regions. This is clearly noticeable when we compare the 
three maps displayed in Figures 7 and 8. In addition, when comparing the two altitude layers, it is 
evident that the higher the altitude, the larger the confidence regions, due to the increased spatial 
dispersion of air traffic with altitude. The results help us to better understand how the TMA is 
actually structured, for instance, to understand at which regions and distances from the airports 
the planned procedures converge into a single path or split into many others. A visual inspection 
of the spatial confidence regions suggests that they have different levels of compactness and the 
spatial distribution of trajectories varies among the arrival/departure patterns.
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Figure 7. Spatial confidence regions below 3,000 ft AGL for GRU and CGH arrival/departure patterns.
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Figure 8. Spatial confidence regions below 1,500 ft AGL for GRU and CGH arrival/departure patterns.
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4.3. Predictability of the urban airspace availability
Once the probabilistic model is estimated, it can be used to make predictions of the traffic patterns 
that are likely to be active, their spatial confidence regions and the resulting urban airspace 
availability for UAM for any given meteorological condition. As an example, Figure 9 shows the 
results of this prediction, based on the application of GMM with a confidence level of 95% and a 
probability threshold of 5%, for the following meteorological condition, which is very common in 
São Paulo during regular sunny days: VMC (ceiling 10,000 ft, visibility 10 km), winds coming from 
the southeast at 8 knots and no rain. For comparison purposes, Figure 10 shows the results for 
weather conditions observed in a typical cold front day: marginal VMC (ceiling 1,500 ft, visibility 
5 km), winds coming from the south at 15 knots and 0.004 kg/m2s convective precipitation rate.

Figure 9. Predicted active patterns, 95% confidence level, 5% probability threshold and airspace availability for the following 
meteorological condition: VMC, winds coming from the southeast at 8 knots, without rain.

Figure 10. Predicted active patterns, 95\% confidence regions and airspace availability for the following meteorological 
condition: marginal VMC, winds coming from the south at 15 knots, with rain.

An analysis of the GMM’s predictive performance was done to evaluate the quality of the model. 
As expressed by Equation 15, a certain procedure is labeled as active if the probability of its 
occurrence is equal to or greater than a threshold value γ. Therefore, by testing different values 
for this parameter, we evaluated the accuracy of the predictive model. The accuracy was defined 
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by the mean of the model’s success rate (whether the predicted active procedures contained the 
trajectories actually observed for the period), measured day by day, for a dedicated test dataset, 
defined as one third of the whole dataset (randomly selected). The results are displayed in 
Table 4. A comparison between the performance of the predictive model with and without the 
implementation of the NCEP numerical meteorological model, i.e., with and without microweather 
features, is provided.

Table 4: Probabilistic model performance for predicting active traffic patterns.

Flow 𝛾

Number of predicted active 
traffic patterns (mean) Accuracy (mean)

Without 
microweather 
features

With 
microweather 
features

Without 
microweather 
features

With 
microweather 
features

0.00 6.0 6.0 100.0% 100.0%

CGH DEP 0.01 4.7 4.8 98.0% 98.4%

0.05 3.5 3.5 96.8% 97.1%

0.00 6.0 6.0 100.0% 100.0%

CGH ARR 0.01 4.5 4.6 98.3% 98.7%

0.05 3.4 3.5 97.0% 97.5%

0.00 6.0 6.0 100.0% 100.0%

GRU DEP 0.01 5.1 5.2 98.8% 99.0%

0.05 3.9 4.1 98.1% 98.6%

0.00 7.0 7.0 100.0% 100.0%

GRU ARR 0.01 5.0 5.0 98.2% 98.6%

0.05 3.7 3.8 97.6% 97.9%

It is evident that for a probability threshold 𝛾 of 0%, every single learned procedure would 
be active regardless of the input meteorological condition. By increasing the threshold to 1% 
and 5%, we find that the average number of predicted procedures decreases, indicating that the 
model is able to reasonably distinguish between active and inactive procedures and the airport 
runway configuration resulting from a given meteorological condition. Naturally, such prediction 
is not perfect, and the model’s accuracy decreases with the use of higher probability thresholds. 
However, we observed an accuracy greater than 95% for a threshold of 5% that predicts nearly 
half of the patterns as active, which is very promising.

Microweather is an important meteorological feature to be considered during UAM emergence. 
Thus, we are interested in investigating the gains of using the NCEP numerical meteorological 
model in our predictive tool. The results from Table 4 make evident that, although slightly, the 
accuracy of the GMM predictive model with microweather features is greater in all cases. This is 
a promising result and suggests that other more specialized numerical models could be tested to 
try to increase the model’s performance even further.

Next, we verify the accuracy of the predictive model in forecasting the spatial distribution of air traffic 
for the procedures predicted as active. For each confidence level and altitude layer, we computed the 
percentage of flights for which the actual position was contained by the predicted confidence region 
(capture percentage). Tables 5 and 6 display the capture percentage of the predicted confidence regions, 
averaged over all traffic patterns and altitude layers, for the same two meteorological conditions 
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considered previously in this section, respectively. A comparison between the performance of the 
predictive model with and without the implementation of the NCEP numerical meteorological model, 
i.e., with and without microweather features, is also provided. The results show that the capture 
percentage closely matches the confidence levels, especially for higher confidence levels. For lower 
confidence levels, the model resulted in a little more conservative confidence regions. The differences 
between the models without and with microweather features were slight.

Table 5: Capture percentage of the predicted confidence regions for the following meteoro- logical condition: VMC, winds 
coming from the southeast at 8 knots, without rain.

Flow
Confidence 
Level

Capture Percentage (mean)
Without 
microweather 
features

With 
microweather 
features

90% 94.6% 94.7%
CGH DEP 95% 96.3% 96.4%

99% 98.1% 98.1%
90% 96.9% 96.9%

CGH ARR 95% 98.1% 98.1%
99% 98.8% 98.8%
90% 94.4% 94.4%

GRU DEP 95% 96.3% 96.4%
99% 98.5% 98.6%
90% 98.1% 98.1%

GRU ARR 95% 98.4% 98.4%
99% 98.8% 98.8%

Table 6: Capture percentage of the predicted confidence regions for the following meteoro- logical condition: marginal 
VMC, winds coming from the south at 15 knots, with rain.

Flow
Confidence 
Level

Capture Percentage (mean)
Without 
microweather 
features

With 
microweather 
features

90% 94.6% 94.7%
CGH DEP 95% 96.3% 96.4%

99% 98.1% 98.1%
90% 96.9% 96.9%

CGH ARR 95% 98.1% 98.1%
99% 98.8% 98.8%
90% 94.3% 94.2%

GRU DEP 95% 96.4% 96.1%
99% 98.6% 98.1%
90% 98.0% 97.9%

GRU ARR 95% 98.6% 99.5%
99% 98.9% 99.9%

5. CONCLUSIONS

In this study, we presented a data-driven approach to modeling the urban airspace availability for 
emerging UAM operations toward supporting their safe and efficient integration. The approach 
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is based on a machine learning framework for descriptive analysis and predictive modeling of 
the current patterns of urban airspace use by conventional traffic. A density-based clustering 
algorithm is first applied to learn existing traffic flow patterns in the terminal airspace from 
historical aircraft tracking data. This knowledge is then combined with meteorological data to 
create a probabilistic Gaussian Mixture model of the spatiotemporal traffic distribution, which 
enables the prediction of active procedures, their spatial confidence regions and the resulting 
airspace availability for UAM flights.

The data-driven approach was demonstrated for the São Paulo metropolitan region, which 
is recognized as a promising market for UAM. With the clustering analysis, we identified and 
characterized the main arrival and departure patterns for GRU and CGH, the two major commercial 
airports that serve the São Paulo metropolitan area. We observed that the spatial dispersion of air 
traffic significantly increases with altitude. Moreover, regardless of the airport, air traffic was found 
to be much more dispersed in departure patterns than in arrival patterns for low-level altitude 
layers. This suggests that a wider region of airspace is more constrained and least accessible for 
UAM in the sectors dedicated to takeoffs. We also noted that the air traffic dispersion was higher 
for traffic departing from CGH than from GRU, while the opposite was verified for arriving traffic.

The probabilistic model showed good predictive performance, with an accuracy higher than 95%, 
and was useful to provide a better comprehension of two factors regarding airspace occupation: 
how many individual procedures are used and how widely air traffic distributes itself. Since the 
model is capable of delivering these outputs after being fed with meteorological information, 
one can forecast in advance the traffic patterns most likely to be active, and hence determine the 
probable urban airspace availability for UAM operation. This allows for smarter and more efficient 
planning by both ATM agents and UAM operators.
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