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ABSTRACT
Signalized intersections are critical points in road infrastructure, often prone to congestion 
and accidents due to capacity limitations and traffic conflicts. Driver response time (RT), 
especially when prolonged, is a behavioral variable that affects traffic performance at these 
locations, contributing to increased delays and reduced road capacity. This study aimed 
to model and analyze the impact of drivers’ RT on traffic flow at signalized intersections 
using the AIMSUN microsimulation software. The methodology involved collecting RT and 
headway data at an intersection in Fortaleza, modeling the RT probability distribution, and 
implementing it in the simulator. Different scenarios were simulated by varying vehicle 
demand and RT to assess their impacts on average delay, v/c ratio, saturation flow, and 
the capacity of signalized approaches. The results showed that the log-normal distribution 
was the best fit to the RT data. Probabilistic modeling of RT in AIMSUN showed that the 
RT of the first vehicle in the queue (RT1) was higher than that of the subsequent vehicles. 
Incorporating probabilistic RT modeling increased delays and reduced capacity compared 
to the default model. The study highlights that probabilistic RT modeling affects the flow of 
microsimulated signalized intersections, particularly under more saturated traffic conditions.
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RESUMO
Interseções semaforizadas são pontos críticos da infraestrutura viária, frequentemente 
sujeitos a congestionamentos e acidentes devido às limitações de capacidade e aos conflitos 
de tráfego. O tempo de resposta (TR) dos motoristas, especialmente quando elevado, é uma 
variável comportamental que afeta o desempenho do tráfego nesses locais, contribuindo 
para o aumento dos atrasos e para a redução da capacidade viária. O objetivo deste trabalho 
foi modelar e analisar o impacto do TR dos motoristas na fluidez do tráfego de interseções 
semaforizadas, utilizando o software de microssimulação AIMSUN. O método empregado 
envolveu a coleta de dados de TR e de headways em uma interseção na cidade de Fortaleza, 
a modelagem da distribuição de probabilidade do TR e sua implementação no simulador. 
Diversos cenários foram simulados, variando a demanda de veículos, assim como a duração 
do TR, com o intuito de avaliar os seus impactos no atraso médio, na razão v/c, no fluxo 
de saturação e na capacidade de aproximações semaforizadas. Os resultados mostraram 
que a distribuição log-normal foi a que melhor se ajustou aos dados de TR. A modelagem 
probabilística do TR nos simuladores mostrou que o TR do primeiro veículo da fila (TR1) foi 
maior do que para os demais veículos em fila. A inserção da modelagem probabilística do TR 
aumentou os atrasos e reduziu a capacidade quando comparado ao modelo default. O estudo 
aponta que a modelagem probabilística do TR afeta a fluidez de interseções semafóricas 
microssimuladas especialmente em condições de tráfego mais saturado.
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1. INTRODUCTION
Signalized intersections are critical components of urban traffic management, often characterized 
by high vehicle density and potential conflict points. These intersections play a crucial role in 
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mobility, particularly in dense urban areas where traffic demand and system responsiveness are 
essential to prevent congestion and minimize accidents. Efficient intersection operations are 
influenced by various factors, including driver behavior.

The driver Response Time (RT) at signalized intersections is defined as the time a driver takes 
to start moving after the vehicle in front left. For the first vehicle in the queue, RT1 is measured 
from the onset of the green signal.

Given the increasing demand for more realistic traffic modeling, one of the leading microsimulation 
software tools, AIMSUN, offers flexibility in modeling RT probabilistically. Thus, the primary 
objective of this article is to analyze the effects of probabilistic RT modeling on the traffic flow 
at a signalized intersection simulated in AIMSUN. The performance measures analyzed include 
discharge headways (s), saturation flow (veh/h), capacity (veh/h), average delay (s), and degree 
of saturation (v/c ratio, dimensionless). The analysis considered factors such as traffic demand 
and vehicle position in the queue.

2. LITERATURE REVIEW
Several transportation studies have explored physical road and traffic characteristics, but driver 
behavior remains a more complex challenge due to its variability in aspects such as gender, age, 
and reaction time (Xie, Zhu and Li, 2020). Response time (RT), defined as the interval between 
the green signal onset and the first vehicle’s movement—or, for subsequent vehicles, the interval 
between the leading vehicle motion and the following vehicle’s reaction—has been analyzed in 
different ways. Murat and Cetin (2019) demonstrated that RT significantly influences saturation 
flow. Other studies, such as those by Nourzad, Salvucci and Pradhan (2014) and Fitch et al. (2013), 
have employed cameras or eye-tracking sensors for RT analysis.

This literature review section discusses the RT’s influence on traffic at signalized intersections 
and RT modeling in microsimulation software such as VISSIM and AIMSUN.

2.1. Response time and its influence on traffic at signalized intersections
Hurwitz et al. (2013) analyzed the impact of driver distraction on the start-up lost time at the 
beginning of signal phases at a signalized intersection, aiming to investigate whether the average 
headway of the first five vehicles in the queue changed when drivers were distracted compared 
to a control group without distraction. Analyzing 4,091 headways from the control group and 
844 from distracted drivers, the study concluded that the average headway for distracted drivers 
was 0.4 seconds longer than for those who were not distracted.

In another study, Murat and Cetin (2019) sought to introduce a new perspective on estimating 
saturation flow by combining vehicular characteristics with human factors. Their findings indicated 
that RT was the most crucial factor for saturation flow and that reducing the average RT to below 
0.8 seconds using new technologies could increase saturation flows to over 3,000 vehicles per hour.

Considering the statistical distributions found in studies over the past 20 years, Li and Prevedouros 
(2002) and Çalişkanelli and Tanyel (2018) analyzed the effect of type of turning movement on 
the response time of the first vehicle in the queue (RT1). For vehicles moving through, the null 
hypothesis that RT1 follows a normal distribution was not rejected. However, for turning vehicles, 
the only distribution that was not rejected for RT1 was the log-normal distribution.

Li and Prevedouros (2002) conducted an analysis of RT at a signalized intersection in downtown 
Honolulu, Hawaii, using video recordings to track vehicle movements. The study focused on two 
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types of movements: through and protected left turns, evaluating variables such as saturation 
headway, start-up lost time, and RT1. The average RT was 1.76 seconds for the through vehicles 
and 1.42 seconds for the left-turning ones.

The difference in RT values was confirmed using the t-Student test, which indicated statistical 
significance between the mean RT of the two types of movement. These results align with the 
findings of Çalişkanelli and Tanyel (2018), who also observed shorter reaction times for turning.

Li and Prevedouros (2002) also noted that approximately 1% of drivers making left turns 
started moving before the green onset. Regarding RT distribution, the data presented strong 
positive skewness (skewness coefficient > 1.0), suggesting that the log-normal distribution might 
be appropriate. However, the Lilliefors test, a variation of the Kolmogorov-Smirnov test, rejected 
this goodness-of-fit.

In a similar study, Çalişkanelli and Tanyel (2018) investigated RT at intersections in a Turkish 
city, focusing on the influence of RT1 on saturation flow and road performance. Nine intersections 
were selected based on criteria such as the absence of bus stops affecting vehicle movement, a 
longitudinal grade below 1%, and a parking ban along the analyzed section. Data collection covered 
19 link approaches, with observations conducted during morning and/or afternoon peak hours, 
recording at least 25 cycles per approach.

The data collection involved installing a camera in a nearby building to capture images of the 
traffic signal and the first vehicle in the queue. In addition, an observer positioned next to the first 
vehicle manually recorded RT1. Another observer collected data including vehicle type, lane width, 
movement direction, driver gender, and traffic signal timing, totaling 1,788 observations for the 
first vehicles in queue. The results showed that the RT of drivers performing turning movements 
(right or left) was significantly shorter than that of drivers going through.

To model the data, the authors applied the Anderson-Darling goodness-of-fit test to assess 
compatibility with different statistical distributions (log-normal, exponential, gamma, and 
Weibull). The results showed that the log-normal distribution best represented the data, being the 
only distribution that was not rejected. Subsequently, a linear regression model was developed 
to predict RT, suggesting that longer traffic signal cycles could increase driver distraction and, 
consequently, prolong RT.

Li et al. (2014) analyzed RT1 at signalized intersections in Beijing, China, comparing scenarios 
with and without a countdown timer for the green phase. The study was conducted at three 
intersections—one with a countdown timer and two without—using cameras installed nearby 
to record four hours of data at each location. Data collection was assisted by an algorithm that 
detected both the start of the green phase and the beginning of vehicle movement. However, the 
algorithm had limitations and failed to record RT when pedestrians, cyclists, or objects obstructed 
the vehicle. The study gathered 150 RT observations for each scenario. The results indicated that 
the mean RT of drivers at the intersection with a countdown timer was lower than the mean RT 
at intersections without the device. This difference suggests that the presence of a countdown 
timer increases driver’s attention and reduces distractions. To evaluate variance homogeneity 
between scenarios, the authors applied Levene’s test, which rejected the null hypothesis of equal 
variances, indicating that RT variances differed significantly between the scenarios. Additionally, 
the Mann-Whitney U test confirmed a statistically significant difference in RT distributions between 
the two scenarios. The chi-square goodness-of-fit test indicated that RT for the first vehicle can 
be represented by the Weibull distribution in the scenario without a countdown timer and by the 
log-normal distribution in the scenario with the device.
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2.2. RT Modeling in AIMSUN
AIMSUN (2024) allows users to specify both RT1 and RT through values associated with probabilities. 
RT1 can be modeled using the “reaction time at stop parameter. RT can be calibrated using the 
parameter “reaction time at traffic light”, which represents the time a vehicle in a queue takes to 
react to the acceleration of the vehicle in front (AIMSUN, 2024).

The specification of these parameters does not require programming; it is done through 
discrete values and their associated probabilities. One challenge is that inserting all probability 
values for both parameters becomes impractical due to the large number of possible 
combinations, with each combination corresponding to a separate entry line in the software 
interface. For example, if one specifies 100 probability values for the “reaction time when 
stationary” parameter (related to RT), he/she will need to input 100 lines in the software entry 
window for each value of the other parameter, RT1. More details on this will be presented in 
the methodology section.

3. METHODOLOGY
The methodology of this study consists of four stages:

1. Data collection and processing.
2. Statistical modeling of RT.

3. Implementation of RT scenarios in Aimsun.
4. Analysis of the effects of RT on traffic microsimulation.

3.1. Data collection and processing
Data collection was conducted using drone footage, as these images provide an orthogonal aerial 
view, enhancing the accuracy of vehicle movement observations. The drone used was the Phantom 
4 Pro+ V2.0, equipped with a 3-axis motorized stabilizer. Filming took place on May 31, 2023, lasting 
60 minutes, during which the average traffic flow was 295 vehicles per hour. The recordings were 
captured during the day under favorable weather conditions, at an altitude of 30 meters, with a 
frame rate of 30 frames per second and Full HD video quality (1920 x 1080 pixels).

The selected location was the southbound approach of the intersection between Humberto 
Monte Avenue and Jovita Feitosa Avenue, in Fortaleza, Brazil. The recorded images allowed clear 
visualization of the stop line and the queue of vehicles (Figure 1). A low-volume motorcycle site 
was selected because they influence the RT of other vehicles, and assessing this effect was not 
within the scope of this study. The traffic signal was recorded using a tripod-mounted camera 
simultaneously with the drone footage to capture the exact moments of the green light onsets. 
The approach has three traffic lanes (each 2.6 meters wide) and a central median that segregates 
the opposite direction. Additionally, a designated waiting area for motorcycles (motobox) was 
present, as shown in Figure 1. Parking was prohibited on both sides of the road, and the maximum 
regulated speed was 60 km/h.

The software Road User Behaviour Analysis (RUBA) software, developed by Tonning et al. (2017), 
was used for data extraction from the videos. This software allows pausing, advancing, rewinding, 
and adjusting the playback speed to facilitate data collection. The tool includes clickable buttons 
for manually marking key moments of interest.
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Figure 1. Signalized intersection approach used in this study.

The output file is a .csv that records the exact video timestamps when each key was pressed, 
with millisecond precision. A key was configured for each vehicle position in the queue, with data 
collected by lane. Observations were made using a slow playback speed of 5 frames per second (fps) 
to enhance accuracy. RT was recorded when the operator detected the vehicle’s initial movement. 
Headway was recorded when the front tire of each vehicle crossed the stop line.

The total observed traffic volume was 295 vehicles, consisting of 282 (95.6%) cars, 11 (3.7%) 
trucks, and 2 (0.7%) buses. Traffic share across lanes was 19% in the right lane, 45% in the center 
lane, and 36% in the left lane. However, in this study, lane position was not considered a variable. 
The RT1 sample included 69 (94.5%) cars, 3 (4.1%) trucks, and 1 (1.4%) bus. The RT sample 
included 213 (95.9%) cars, 8 (3.6%) trucks, and 1 (0.5%) bus. Due to the small sample sizes for 
trucks and buses, only cars were modeled in this study.

3.2. Statistical Modeling of RT
The estimation of probability distributions was based on the literature review. The normal, 
log-normal, gamma, and Weibull distributions were selected for both RT1 and RT. RT includes 
all positions in the queue from the second position onward; thus, RTs were not differentiated 
beyond the second position, as recommended by Fontes, De Araújo and De Castro Neto (2022). 
The statistical goodness-of-fit tests used were the Kolmogorov-Smirnov, Chi-square, and Anderson-
Darling tests. After selecting the most suitable probability models, they were implemented in the 
microsimulation software.

3.3. Implementation of the RTprob Model in AIMSUN
To implement the Probabilistic Response Time (RTprob), which is generated by the chosen probability 
distribution, in AIMSUN, the available parameters were used, namely: the “reaction time at stop” 
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parameter for RT1 and the “reaction time at traffic light” parameter for RT. As mentioned in Section 
2.2, these parameters are input without requiring programming, using discrete RT values and their 
associated probabilities. One challenge is that the possible combinations of RT1 and RT values can 
be extremely large, with each combination taking a separate entry line in the software interface, 
as shown in Figure 2. Therefore, in this study, RT1 was fixed for scenarios in which RT varied.

Figure 2. User interface for entering RT1 and RT values in AIMSUN.

To focus on the analysis on RT, a simple two-lane road was created and lane changing was 
prohibited. This configuration ensured more uniform vehicle discharge during the green phase, 
facilitating the analysis of RT effects. Four simulation scenarios were created, as shown in Table 1. 
The mean RT1 in Scenario 2 (1.9 S) and the mean RT in Scenario 3 (1.5 S) were obtained from 
field data. Scenario 4 was designed to assess the effects of an RT increase of 0.5 S, to achieve the 
fourth objective of the study.

Table 1: Simulation Scenarios in AIMSUN.

Scenarios RT1 RT

1 Default (1.6 S) Default (1.2 S)

2 RT1prob (mean = 1.9 S) Default (1.2 S)

3 Default (1.6 S) RTprob (mean = 1.5 S)

4 Default (1.6 S) RTprob (mean = 2.0 S)

The traffic signal timing had a cycle of 80 seconds, with 57 seconds of green, 3 seconds of yellow, 
and 20 seconds of red. The desired speed was set according to the collected data at 60 km/h. 
Three vehicle demand scenarios (1,380, 1,780, and 2,180 pcu/hour) were simulated to analyze 
scenarios 1 to 5 at different volume/capacity (V/C) ratios: 0.50, 0.65, and 0.80, using the V/C ratio 
of scenario 3 as a reference. For each scenario, 30 replications of 15 minutes were conducted, 
plus a 100-second network warm-up period, using the same set of random seeds across the four 
scenarios. For each replication, the output variables obtained were average delay, saturation flow, 
and capacity. The network is represented in Figure 3.
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Figure 3. Study Simulation Network.

3.4. Analysis of RT effects on microsimulated traffic flow

To evaluate the effects of modeling RTprob on headway, capacity, and saturation flow, a 
saturated demand of 10,000 vehicles/hour was applied in all proposed scenarios. A total of 
30 replications of 15 minutes were conducted, each with a 100-second network warm-up 
period. A vehicle detector placed immediately after the traffic signal collected flow in both 
lanes. This demand was extrapolated to 10,000 vehicles/hour to generate sufficiently long 
queues in the simulation, allowing for the observation of saturation flow and approach 
capacity in each scenario.

Saturation headway data in AIMSUN were obtained from a .txt output file for each lane and 
replication, containing headway values for each vehicle, separated by position and traffic 
signal cycle. Saturation flow was calculated as the inverse of the average saturation headway. 
Average delays and capacity were estimated directly from the software outputs. Scenario 
analyses were based on line and bar graphs, as well as t-Student 5%-significance tests for 
the three demand levels.

All parameters of the driving behavior models (car-following, lane-change, gap-acceptance, 
speed-acceleration curves etc.) were kept at their default values for all four evaluated scenarios, 
except for the reaction time which is the studied parameter. This decision was made because the 
study did not focus on a specific location, so the default software settings were maintained.

4. RESULTS AND DISCUSSIONS

4.1. Data collection of RTobs and Headway

As previously mentioned, data collection was conducted through drone footage recorded at the 
intersection of Jovita Feitosa Avenue and Humberto Monte Avenue. The recordings occurred 
between 9:00 AM and 10:30 AM, divided into eight video takes, totaling one hour of footage. 
A total of 28 signal cycles were analyzed, with 289 observed vehicles, including 11 trucks (3.8%), 
2 buses (0.6%), and 276 passenger cars (95.5%).

4.2. Statistical Modeling of RT

To analyze probability distributions, the R software was used, utilizing the libraries “readxl,” 
“fitdistrplus,” “goftest,” “tseries,” and “nortest.” The Chi-square (χ2), Kolmogorov-Smirnov (KS), 
and Anderson-Darling (AD) tests were performed to assess the goodness-of-fit of the normal, log-
normal, gamma, and Weibull distributions to the RT1 data (a) and RT data (b) (Figure 4). For RT1, 
only the log-normal distribution was not rejected in any of the tests (all p-values > 5%) (Table 2). 
For RT, none of the distributions were rejected (all p-values >5%) (Table 3).
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Table 2: Goodness-of-Fit Tests for Probability Distributions for RT1.

Distribution χ2 Test p-value KS Test p-value AD Test p-value

Normal 317.6 0.00 0.10 0.02 4.85 0.00

Log-normal 13.3 0.15 0.07 0.24 1.02 0.35

Gamma 25.2 0.00 0.07 0.23 0.89 0.42

Weibull 46.3 0.00 0.07 0.25 1.58 0.16

Table 3: Goodness-of-Fit Tests for Probability Distributions for RT.

Distribution χ2 Test p-value KS Test p-value AD Test p-value

Normal 7.3 0.29 0.07 0.83 0.45 0.80

Log-normal 1.7 0.95 0.1007 0.53 0.49 0.75

Gamma 2.4 0.88 0.08 0.82 0.29 0.94

Weibull 6.2 0.40 0.07 0.85 0.40 0.85

Figure 4. Goodness-of-Fit Analysis of the Statistical Distributions for RT1.

Given these results, in the subsequent steps, probabilistic modeling of RT1 and RT was 
implemented in Aimsun using the log-normal distribution, the only one not rejected in any of 
the tests. Furthermore, previous studies have supported its applicability to this parameter, as 
demonstrated in the literature review.

4.3. Analysis of RT effects on microsimulated traffic
This section presents the results of the analysis of the effects of incorporating probabilistic 
RT modeling into the simulations. The impacts on average delay, capacity, saturation flow, and 
simulated discharge headway were evaluated for different levels of saturation and average RT, as 
defined in section 3.

A summary of the delay and saturation degree results by demand level for the proposed 
AIMSUN scenarios is shown in Figure 5. The letter following each scenario indicates the demand 
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level. The range of values along the delay curve (red) connects the limits of the 95% confidence 
intervals for each scenario.

Figure 5. Delay and V/C Simulation Results for Each RT and Flow Scenario.

Significant differences in the v/c ratio can be observed among the four scenarios for the same 
demand level, except for the first two scenarios. Regarding delay, differences only emerged in 
Scenario 4, particularly at higher flow levels. Paired t-tests were conducted to determine 
whether there were significant differences in the average delay, capacity, and saturation 
flow among scenarios. The results, along with the absolute percentage differences between 
their values, are presented in Table 4. Cells marked with (*) indicate comparisons where the 
t-test found no statistically significant difference between the means. The calculation in each cell 
was as follows (Equation 1):

   100
 

Column Mean RowMeanPercentage Difference
RowMean

−
= ×   (1)

Thus, in Table 4, for example, the value of 4% in the first row and fourth column means that the 
delay in scenario 4a was 4% higher than the delay in scenario 1a.

As observed, scenarios 1, 2, and 3 presented no statistically significant differences, except in the case 
with a demand of 2,180 vehicles/h, where there was 6% increase in delay from scenario 2c to 3c, and 
5% reduction from scenario 3c to 1c, indicating some impact. However, the differences between the 
default scenario and the scenario with an RT increase of up to 0.5 S reached over 32%. These high delay 
values, reflected in a v/c ratio greater than 1, indicate a strong sensitivity of AIMSUN to RT modeling.

Particular attention is given to the comparison between scenarios 1 and 3, as scenario 1 represents 
the default software values, while scenario 3 includes probability distributions estimated from 
field-observed RT data. The results show that using probabilistic RT did not cause delay differences 
in lower and medium demand scenarios; in the higher demand scenario, probabilistic modeling 
increased the average delay by 5%.
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Table 4: Comparison of Delays Between Simulated Scenarios.

Flow Scenarios 1a 2a 3a 4a

1,380 ucp/hour 1a - 0%* 1%* 4%

2a 0%* - 1%* 5%

3a -1%* -1%* - 3%

4a -4% -4% -3% -

1,780 ucp/hour 1b - -1%* 2%* 8%

2b 1%* - 3%* 9%

3b -2%* -3%* - 6%

4b -7% -8% -6% -

2,180 ucp/hour 1c - 0%* 5% 32%

2c 0%* - 6% 33%

3c -5% -5% - 25%

4c -24% -25% -20% -

For the analysis of capacity and saturation flow, as with delay, a graph was generated with the 
values per scenario (Figure 6). Additionally, the percentage differences between scenarios are 
presented in Table 5.

Figure 6. Capacity and Saturation Flow by Simulation Scenario.

Table 5: Differences in Capacities Among the Simulated Scenarios.

Scenarios 1 2 3 4

1 - -6% -19% -33%

2 6% - -13% -28%

3 23% 16% - -17%

4 48% 40% 21% -

For these analyses, it is important to recall the differences among scenarios. Scenarios 1 and 
2 differ due to the probabilistic modeling of RT1 in Scenario 2, whereas Scenario 1 maintains all 
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values on default. Additionally, Scenarios 3 and 4 in AIMSUN model only RT probabilistically, while 
keeping RT1 fixed at its default value.

In the results presented in Table 5, probabilistic modeling of RT led to a significant reduction 
in capacity, with Scenario 3 diverging from the default (Scenario 1) by 19% and showing a 13% 
difference between Scenarios 2 and 3. These differences are statistically significant, as shown by 
the 95% confidence intervals in Figure 6, which do not overlap. The significant difference between 
Scenarios 1 and 2 suggests that modeling RT1 probabilistically, with a more realistic field-measured 
mean value of 1.9 S, resulted in a reduction in roadway capacity in AIMSUN. The even greater 
difference in Scenarios 3 and 4 compared to Scenario 1 indicates that modifications to RT had 
more relevant effects on roadway capacity.

The results on saturation flow (Table 6) show that the probabilistic modeling of RT1 had no 
significant impact, whereas RTprob had – especially when its mean value was increased. This is 
because the calculation of saturation flow considers only vehicles from the fifth position. Cells 
marked with (*) indicate comparisons where the t-test found no statistically significant difference 
between the means. The calculation in each cell was performed according to Equation 1.

Table 6: Differences in Road Capacities among the Simulated Scenarios.

Scenarios 1 2 3 4

1 - 0%* -13% -28%

2 0%* - -13% -28%

3 15% 15% - -17%

4 39% 39% 21% -

To evaluate the behavior of the average discharge headway by vehicle position in the queue, a 
graph was created showing the mean headway values per position for each simulated scenario, 
along with field-obtained data (Figure 7).

Figure 7. Average Headway by Vehicle Position in the Queue, for Each Simulation Scenario.

Figure 7 shows that, for the 1st position, the highest headway was from Scenario 2, while for 
all other scenarios it was practically identical. This is because the RT1 adopted in Scenario 2 was 

TRANSPORTES | ISSN: 2237-13461 11

Pedrosa, Castro Neto and Araújo Volume 33 | e3062 | 2025



the probabilistic RT1 (RT1prob) with a mean of 1.9 S, whereas in all other scenarios, the default 
value of 1.6 S was used.

5. CONCLUDING REMARKS

Although the literature presents various studies on driver response time (RT), especially of the first 
vehicle in the queue (RT1), there are significant gaps regarding the effect of this variable at signalized 
intersections, particularly in the context of traffic flow. This study aimed to fill this one gap, by modeling 
and analyzing the impact of drivers’ RT at signalized intersections, microsimulated in AIMSUN.

To achieve this objective, RT and headway data were collected at an intersection in Fortaleza, 
the probability distribution of RT was modeled, and it was implemented by AIMSUN . The data 
collection was conducted in Fortaleza, where the RTs of drivers in different traffic lanes were 
recorded and analyzed. Goodness-of-fit tests were used to identify the probability distributions 
that best represent field RTs, and the log-normal distribution was the most suitable.

Regarding the results, the probabilistic implementation of RT in the microsimulator marginally 
increased average delay, increased the v/c ratio, and reduced capacity and saturation flow at the 
intersection. Furthermore, it was possible to separately verify the impacts of RT1 and RT modeling, 
with the latter having a greater effect on delay, capacity, and saturation flow.

Given the results, this study reinforces the importance of traffic managers and analysts in 
properly modeling RT to obtain more realistic performance predictions at signalized intersections. 
It is important to note that the observed effect sizes of RT modeling on the traffic variables –delay, 
capacity, saturation flow, and headways–are limited to the studied intersection. However, the results 
illustrate how more realistic modeling of RT can cause significant differences in the estimation of 
these variables, potentially leading to incorrect conclusions and decision-making.

Among the main limitations of this study, two are highlighted: the consideration of only one 
intersection, and the limited observations of other vehicle types, such as buses and trucks. Therefore, 
future research should consider different traffic conditions, including various vehicle types and 
service levels, to better understand the effects of RT on traffic modeling. Finally, future studies 
could conduct similar analyses using other microsimulation software packages.
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