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ABSTRACT

Maintaining indoor air quality is a critical aspect of human health and occupational well-being,
especially since a large portion of human activities takes place in confined environments. This
study aimed to characterize the emission of atmospheric pollutants during laboratory-scale
asphalt mixture production, in order to generate knowledge about air quality in such settings
and contribute with technical information within the Brazilian context. Experimentally, the
following environmental parameters were monitored: air temperature, relative humidity,
carbon dioxide (CO,), total suspended particles (TSP), particulate matter of 10 um (PM, ) and
2.5um (PMZ.S), as well as metals (Ca, Mg, Zn, Ni, V, and Pb) and benzo(a)pyrene. The average
concentrations observed during asphalt mixing were: 1153.2 pug/m?* of TSP; 244.0 ug/m? of
PM,; 161.5 pg/m’ of PM,.; 5.8 ng/m? of benzo(a)pyrene; 674 ppm of CO,; 105.8 ug/m? of
calcium (Ca); 63.6 ug/m? of magnesium (Mg); and 3.81 pug/m?3 of zinc (Zn). Lead (Pb), nickel (Ni),
and vanadium (V) were not detected in the samples. Overall, the average concentrations of
TSP, PM,, PM,., benzo(a)pyrene, Ca, Mg, and Zn exceeded the limits established by national
and international standards for indoor environments. The findings raise concerns regarding
occupational safety and the environmental sustainability of laboratory-scale asphalt production
processes, highlighting the need for control measures, continuous use of personal protective
equipment, and changes in laboratory practices to mitigate occupational risks.

RESUMO

A manutenc¢do da qualidade do ar interior é um aspecto critico para a saide humana e
bem-estar ocupacional, especialmente porque grande parte das atividades humanas ocorrem
em ambientes confinados. Este trabalho teve como objetivo caracterizar a emissao de poluentes
atmosféricos da produgdo laboratorial de misturas asfalticas, visando gerar conhecimento
sobre a qualidade do ar em ambientes laboratoriais dessa natureza e contribuir para a geragdo
de informagGes técnicas deste cendrio no contexto nacional. Experimentalmente, foram
monitorados os seguintes parametros ambientais: temperatura do ar, umidade relativa do
ar, dioxido de carbono (CO,), particulas totais em suspensdo (PTS), materiais de particulados
de 10 um (MP_ ) e 2,5 um (MP,,,), além de metais (Ca, Mg, Zn, Ni, V e Pb) e benzo(a)pireno.
As concentragbes médias encontradas durante as misturas asfalticas foram: 1153,2 ug/m?de
PTS; 244,0 pg/m’ de MP_; 161,5 pg/m? de MP,,,; 5,8 ng/m? de benzo(a)pireno; 674 ppm de
CO,; 105,8 pg/m? de calcio (Ca); 63,6 pg/m?* de magnésio (Mg) e 3,81 pg/m? de zinco (Zn).
Os elementos chumbo (Pb), niquel (Ni) e vanadio (V) ndo foram detectados nas amostragens.
Em geral, as concentra¢bes médias de PTS, MP_, MP,, , benzo(a)pireno, Ca, Mg e Zn ultrapassaram
os limites estabelecidos pelas normativas nacional e internacional para ambientes interiores.
Os resultados encontrados levantam preocupagdes quanto a seguranga ocupacional e a
sustentabilidade ambiental dos processos laboratoriais de produgdo asfaltica, apontando para
anecessidade de medidas de controle, uso continuo de equipamentos de prote¢do individuais
e mudangas nas rotinas laborais para mitigacdo de riscos ocupacionais.

TRANSPORTES | ISSN: 2237-13461


https://orcid.org/0000-0002-9481-5854
https://orcid.org/0009-0006-6731-3599
https://orcid.org/0000-0003-1219-3850
https://orcid.org/0000-0003-2609-436X
https://orcid.org/0000-0002-9123-2805
https://orcid.org/0000-0002-4711-0552
https://orcid.org/0000-0002-9250-2635
https://www.revistatransportes.org.br/anpet/index

Silva et al. Volume 33 | e3125 | 2025

1. INTRODUCTION

Asphalt pavements are the most widely used paving material worldwide, accounting for approximately
95% of paved roads in Brazil, including both urban streets and highways (Bernucci et al., 2022).
Despite their importance, the transportation infrastructure industry generates environmental
hazards, particularly regarding air pollution, since various pollutants are emitted during asphalt
paving operations (Alcantara et al., 2019). The primary raw material used in this industry is
petroleum, which contains aliphatic compounds, cyclic alkanes, aromatic hydrocarbons, polycyclic
aromatic compounds, and metals such as iron, nickel, and vanadium (WHO, 2004). From crude oil,
Petroleum Asphalt Cement (AC) is derived, composed mainly of carbon and hydrogen, along with a
mixture of heteroatoms such as nitrogen, sulfur, metals, and other elements (Bernucci etal., 2022;
Wang et al,, 2022).

During paving operations, the asphalt concrete used on roads is composed of a mixture of aggregates
(typically crushed stone) and AC used as a binder (Tang et al., 2020; Germin-Aizac et al., 2023).
Hot mix asphalt production occurs at temperatures around 160 °C to reduce AC viscosity and
ensure proper workability for efficient aggregate coating (Alcantara et al., 2019). As a result of
this heating, the hydrocarbons present in the asphalt binder are released into the atmosphere
in the form of asphalt fumes, which are emitted into the environment and remain airborne.
These fumes typically contain pollutants such as particulate matter, organic and inorganic gases
(CO,, SO,, NO,), Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons
(PAHs) (Wangetal., 2021). According to Xu et al. (2018), volatile and particulate compounds have
carcinogenic potential and may result in significant risks to human health. Moreover, prolonged
occupational exposure to PAHs, present in these emissions, has been linked with the development
of lung and skin cancer (Jang et al., 2018). Additionally, the presence of heavy metals is concerning
because of their toxicity to humans, with chromium, arsenic, cadmium, and nickel being classified
as carcinogenic (Suvarapu and Baek, 2017).

On the other hand, although aggregates — which make up 90-95% of the asphalt mixture mass — are
often considered motionless, they also contribute to the emission of fine particles and metals. The
processing of these materials, involving steps such as storage, handling, screening, drying, and heating
(approximately 15 °C above AC temperature), results in the emission of fugitive dust. The resulting
particulates remain airborne, constituting a significant source of pollution in the work environment,
alongside asphalt mixture production (Alcantara et al., 2023; Kharat, 2022; Bernucci et al.,, 2022).
A study by von Gunten, Konhauser and Alessi (2020) reported that the wear and weathering of
mineral aggregates in asphalt mixtures release metals such aslead (Pb), cadmium (Cd), and zinc (Zn)
into the environment. Lucas Jr,, Babadopulos and Soares (2019) identified that granite aggregates
used in such material primarily contain oxides of silicon, aluminum, iron, calcium, and potassium.
These findings align with a study by Han, Lee and Baek (2023), who observed that dust generated
during asphalt pavement work contains elements such as aluminum, silicon, magnesium, sodium,
and potassium — reinforcing the notion that mineral aggregates are key sources of these elements.

Exposure to air pollutants can occur in both outdoor and indoor environments. Indoor pollutant
levels may be 2 to 5 times higher than those in outdoor air, which is particularly concerning given that
people spend an average of 90% of their time indoors (USEPA, 2024). In 2024, Brazil implemented
a regulatory change regarding indoor air quality standards. ANVISA Resolution RE No. 09/2003,
which previously defined reference standards for Indoor Air Quality (IAQ), was replaced by the
technical standard NBR 17.037 (ABNT, 2023). This updated standard introduces more current criteria,
bringing national parameters into alignment with international guidelines and best engineering
practices for IAQ.
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Air quality in educational environments, particularly in university laboratories, is a growing
concern due to the prolonged time students, technicians, and researchers spend in such spaces.
In research centers working on asphalt mixtures, there are potential health risks due to exposure
to toxic substances found in asphalt. However, the lack of data regarding these impacts renders
the problem largely invisible and often neglected, creating uncertainty about the actual health
risks involved (Branco et al,, 2024; Sandaka, Gouveia and Senger, 2018).

Although the industrial production of asphalt has been widely studied in terms of air quality
impacts, there is a clear gap in the characterization of pollutant emissions during laboratory-scale
hot mix asphalt production. Mousavi et al. (2024) and Li et al. (2024) indicate that most research
focuses on industrial stages or field applications, with little documentation available for emissions
from asphalt mixtures in controlled laboratory environments.

Only four studies stand out regarding emissions from laboratory-scale asphalt mixtures: Saleh,
Ashour and Moustafa (2006) investigated VOCs, gases (SO,, CO,, CO, N,0), particulate matter, and
noise in Egypt; Lin, Hung and Leng (2016) analyzed VOCs, PAHs, PM,.., and noise in Hong Kong;
Abdullah etal. (2016) evaluated CO,, NO,, and NOx in Malaysia; and Gaudefroy etal. (2022) studied
VOCs in bio-recycled asphalt in France. Thus, the present study aims to pioneer, in Brazil, the
investigation of air pollutant emissions from hot mix asphalt production in an academic research
setting. It seeks to associate the physical characteristics of the laboratory environment and the
concentrations of airborne substances with user well-being and occupational health risks, thereby
contributing to the systematization of data in this field.

2. MATERIALS AND METHODS

2.1. Monitoring site

The monitoring of emissions generated during the processing of asphalt materials was conducted
in a university laboratory specialized in asphalt mixture research. This laboratory is affiliated
with the Technological Research Center for Asphalt, located in the city of Fortaleza, Ceara, Brazil.
According to the Brazilian Bioclimatic Zoning described in NBR 15220-3 /2024, the city is classified
within bioclimatic zone 6A - Very hot and humid, with a Mean Dry Bulb Temperature (MDBT)
exceeding 27 °C and an average relative humidity above 68% (ABNT, 2024). The laboratory is located
inside a building and has only one facade facing the outdoors (west facade), which favors solar
incidence during the afternoon and limits natural ventilation due to the obstruction of prevailing
winds from the east and southeast directions (Figure 1). The building exterior cladding consists
of non-load-bearing ceramic brick masonry walls, finished with cement mortar plaster. The roof
is made of aribbed reinforced concrete slab, with a ceiling height of 5 m. The space includes eight
sliding glass windows (0.6 m x 1.2 m), totaling 5.76 m? of natural ventilation and lighting area, as
well as two external gates made of galvanized steel sheets (2.0 m x 2.9 m).

Several studies related to infrastructure are conducted in this laboratory environment, such as
material characterization, asphalt mixture production, and mechanical testing. The laboratory
layout (Figure 2) includes areas designated for laboratory practices as well as study rooms. The
monitoring zone contains two split-type air conditioning units (36,000 BTU each) without air
renewal, a countertop stove fueled by Liquefied Petroleum Gas (LPG), and four ovens.

The mixer used for asphalt mixture production is located in the central area of the laboratory,
positioned in a corridor that connects different operational sectors, such as the screening station
and the compaction/simulation station. The space is equipped with an axial-type exhaust system,
connected to ducts that discharge fumes to the outside. This system is installed directly above the
mixer to remove gases and vapors emitted during the mixing process.
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Figure 1. Solar plan of the building with wind rose and side view highlighting the location of the laboratory.
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During laboratory activities, two air conditioning units are used to cool the environment. Doors
and windows remain constantly closed in order to prevent the dispersion of pollutants to adjacent
areas, resulting in the absence of natural ventilation or air exchange with the outdoor space, except
when the exhaust system is activated.

This exhaust system is typically used during the production of asphalt mixtures. However,
considering that the aim of this study is to characterize atmospheric emissions resulting from the
production of asphalt mixtures in a laboratory environment — a subject for which data are still
unavailable in the Brazilian context — the decision was made not to activate the exhaust system
during measurements. This procedure represents an atypical condition in the laboratory’s routine
and was adopted exclusively for experimental purposes.

2.2. Indoor air quality monitoring

Measurements were conducted between April and May 2024 under two conditions: (i) with
no laboratory activity; and (ii) during hot-mix asphalt production operations. In case (i), three
reference measurements were carried out, regularly scheduled for Monday mornings from
8:00 a.m. to 10:00 a.m., after approximately 60 hours without any laboratory activity. In case (ii),
six measurements were taken during hot-mix asphalt processing, on different weekdays, following
the laboratory’s operational schedule.

Following the routine laboratory practice, the asphalt mixtures were composed of crushed
stone and stone dust as mineral aggregates and polymer-modified asphalt cement AC 60/85 as
the binder. These materials were processed at high temperatures using a Solotest® closed-drum
mixer, with mixing temperatures of 169 °C and processing durations ranging from 10 to 32 minutes.
The emission monitoring period for the asphalt mixtures, regardless of the mixing duration, was
set at 120 minutes for each of the six mixtures.

2.2.1. Air quality indicators

Atmospheric emissions generated during asphalt mixing were monitored using multiparameter
analyzers, in accordance with the protocols established by NBR 17.037 (ABNT, 2023). The
quantification of Total Suspended Particulate (TSP) was carried out using two AirCheck XR-5000
sampling pumps, operating at a flow rate of 3 L/min for 2 hours, totaling a sampled volume of 360 L
per pump. Particle collection (TSP) was performed on PVC and cellulose acetate filter membranes,
both 37 mm in diameter with a pore size of 5 um.

The Temtop M2000 Elitech® device, equipped with a laser sensor, was used for real-time
monitoring of inhalable particulate matter (PM, ) and fine particulate matter (PM, ), with a
recording frequency of 1 min, resulting in approximately 120 readings during the sampling
campaign. The device was positioned 2 m from the emission source.

The evaluation of additional parameters employed a CO,77 AKSO® portable analyzer equipped
with a non-dispersive infrared (NDIR) sensor for CO, measurement, as well as sensors for air
temperature and relative humidity. In the gravimetric analysis of TSP, the PVC membranes were
pre-dried for 24 hours and weighed using a Shimadzu AUW220D analytical balance. After sampling,
the drying and weighing procedure was repeated to calculate the particulate concentration (pug/m?),
based on the difference in dry mass and the volume of air processed. The regulatory limits for the
evaluation of the pollutant levels monitored in this study are presented in Table 1.
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Table 1: Summary table of recommended limits for indoor air pollutants

Temperature Relative Humidity CO, TSP PM, PM, . BaP
(2C) (%) (ppm)  (ug/m?)  (pg/m’) (ug/m’) (ng/m3)
21-26@ 35-65 @ 1150 @ 8o @™ 75 @ 37.5@ 1.2®
1000 ® 50 @ 25 (@ 1.0M
45 (@ 15 @ 0.8@®

@ABNT (2023); ®UBA (2008); )ANVISA (Brasil, 2003); “WHO (2021); @EPD (2025); "European Union (2004); ©UBA (2020);
MHong Kong (2019). *NBR 17037/2023 establishes that the internal level should be: external CO, + 700 ppm. The external
level in this study = 450 ppm. **Since NBR 17037/2023 does not include TSP, the previous ANVISA (Brasil, 2003) limit was
used as a reference.

2.2.2. Determination of metallic and organic micropollutants

Hot acid digestion of cellulose acetate filters was used to determine metal concentrations in TSP.
The filters were placed in Teflon tubes, to which a mixture of HCI/HNO, (3:1) and HF (48%) was
added until complete immersion. The containers were heated at 200-220 °C for 4 hours to ensure
total digestion of the solids. After cooling, the extracts were diluted with ultrapure water (0.1 uS/cm)
and analyzed using an atomic absorption spectrophotometer (iCE 3000®, Thermo Scientific), with
specific calibration curves for each metal used for quantification.

The quantification of benzo(a)pyrene (BaP) adsorbed onto PVC filters was carried out by
High-Performance Liquid Chromatography (HPLC). Extraction was performed in a Soxhlet system
for 10 hours using an acetone/hexane solution (1:1, v/v). The filtered extracts were analyzed using
a Varian ProStar® chromatograph with a Diode Array Detector (DAD), equipped with a Hypersil
Green PAH column, operating at 225 nm. Benzo(a)pyrene (BaP) was used as a toxicological risk
marker due to its carcinogenic potential (Stoji¢ et al., 2022).

3. RESULTS AND DISCUSSION

3.1. Air quality indicators

According to Brazilian regulations (NBR 17.037/2023), indoor environments should operate in
temperatures between 21 and 26 °C and relative humidity levels between 35 and 65% (ABNT, 2023).
Figure 3 presents the recorded data on temperature and relative humidity and displays the CO,
concentration levels monitored in the laboratory during asphalt mixture preparation and in the
absence of laboratory activities.

Average temperatures remained stable under both laboratory operational conditions (Figure 3a).
In contrast, relative humidity varied more during operation (up to 29%) than in idle conditions (6%).
Still, values mostly remained within the limits established by the Brazilian standard NBR 17.037 (ABNT, 2023),
except during samples 5 and 6, which were collected during operation — likely due to increased
operation of the air conditioning system, which reduces humidity. These same samples also recorded
the lowest temperatures, further supporting this hypothesis.

The laboratory’s construction system presents limitations in terms of thermal comfort, especially
considering its location in bioclimatic zone 6A (hot and humid climate), as defined by the Brazilian
standard NBR 15220-3 (ABNT, 2024). The building has a single west-facing fagade, which contributes
to afternoon heat gain and prevents cross-ventilation by blocking prevailing winds from the east
and southeast.
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Figure 3. Temperature, relative humidity, and CO, in the asphalt mixing laboratory environment.

The ceramic block masonry walls with cement mortar finish and the ribbed reinforced concrete
slab result in high thermal inertia, which is unfavorable for the local climate. In addition, the area
of natural ventilation provided by the windows is limited, and there are no shading elements
or passive strategies for heat mitigation, such as brise-soleils or perforated blocks (cobogés),
compromising the building’s bioclimatic performance.

Furthermore, the use of air conditioning systems without proper air renewal contributes to the
deterioration of indoor environmental quality. This is because such systems continuously recirculate
indoor air without introducing fresh outdoor air, promoting the accumulation of pollutants.

CO, concentrations (Figure 3b) ranged from 547.5 ppm (sample 1) to 788.2 ppm (sample 5), with a
peak of 1,105 ppm in the latter, attributed to high occupancy (11 people, compared to an average of 4).
In the absence of activities, CO, levels ranged from 511.39 ppm to 553.88 ppm, significantly lower.
CO, emissions in indoor environments such as asphalt mixture laboratories typically originate
from two main sources: emissions from thermal processes (e.g.,, combustion of fuels such as
LPG and diesel) and biological emissions, primarily associated with human respiration. During the
OP-1 and OP-4 sampling campaigns, low occupancy and no use of the LPG-fueled countertop stove
were recorded, resulting in reduced CO, concentrations. During these periods, gas levels remained
close to those observed under inactive laboratory conditions. In the other samplings — particularly
in OP-5 — greater circulation of people and the use of the stove to heat asphalt binders likely
contributed to higher localized CO, levels. Except for the peak value, all measurements remained
within the limits established by the Brazilian standard NBR 17.037 (ABNT, 2023) and the German
Environmental Agency (UBA, 2008). The values observed are comparable to those reported
by Abdullah et al. (2016), who recorded 889.67 ppm for mixtures processed at 165 °C and
between 533.01 and 790.67 ppm for mixing at 145 °C.

The concentrations of particulate matter analyzed during the laboratory study are presented
in Table 2.

The average concentrations of particulate matter (TSP, PM,, PM, ) were higher during the
asphalt material processing period, while the recorded values decreased significantly in the
absence of laboratory activities. Figure 4 provides a detailed presentation of particulate matter
concentrations during the monitoring period.
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Table 2: Average concentrations of particulate matter in the laboratory environment

Pollutant Mixture N X c CV (%) Maximum Minimum
TSP (nug/md) Not Operating 3 51.7 8.8 17.02 579 41.7
Operating 6 1153.2 522.6 45.32 2163.9 810.2
PM,, (ug/m?) NotOperating 3 7.1 0.9 12.68 7.9 6.1
Operating 6 244.0 56.5 23.16 356.9 207.0
PM,, (ug/m?) Not Operating 3 4.1 0.5 12.20 4.6 3.5
Operating 6 1615 40.8 25.26 244.0 139.5
N: number of samples; x: arithmetic mean; o: standard deviation; CV: coefficient of variation.
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Figure 4. Concentrations of particulate matter in the laboratory environment.

TRANSPORTES | ISSN: 2237-13461




Silva et al. Volume 33 | e3125 | 2025

TSP concentrations ranged from 810.2 pg/m? (sample 4) to 2,163.9 pg/m? (sample 5). In sample 4,
the asphalt processing time was 10 minutes, while in sample 5, the mixing duration was longer,
reaching 34 minutes. This difference in operational conditions had a direct influence on the
concentrations of particulate matter and other pollutants analyzed, which can be observed in the
subsequent results throughout the study.

In a study conducted by Kitto et al. (1997), significantly elevated TSP concentrations were identified,
ranging from 39,330 pg/m? to 45,620 pg/m? when heating asphalt to 200 °C. In that case, fume
sampling was conducted directly at the furnace outlet, which explains the high levels observed.

PM,  concentrations showed a wide range of variation, particularly in sample 1 (12 minutes of
mixing), which recorded values between 8 pg/m?and 877 pg/m?, with an average of 239.29 pug/m?,
indicating the presence of peaks (outliers). The lowest range was observed in sample 6 (11 minutes
of mixing), with values between 96 pg/m?*and 391 pg/m?*and an average of 207.05 pg/m?3, although
still with measurements above the upper limit. These outliers are attributed to specific events
such as the dumping of aggregates into the mixer and the cleaning of sieves using compressed air,
both of which promote particle resuspension. Overall, PM, j concentrations exceeded the limits
established by EPD (2025) at 75 ug/m3, ABNT (2023) at 50 ug/m3, and the WHO (2021), which
adopts the most stringent limit of 45 pg/m?.

Data on PM, . concentrations show values ranging from 6 ug/m? to 565 ug/m?, with an average
of 153.23 pg/m? in sample 1, while in sample 6 the range was from 67 pg/m? to 269 pg/m3, with
an average concentration of 142.26 ug/m?. Thus, the PM, . values observed during asphalt mixing
exceeded the exposure limits established by EPD (2025) at 37.5 pg/m? ABNT (2023) at 25 pg/m?3,
UBA (2021) at 15 pg/m?3,and WHO (2021) also at 15 pg/m?3. In a similar study, Lin, Hung and Leng (2016)
evaluated PM, . emissions during laboratory-scale asphalt mixture processing. The authors found
that, at 175 °C, average PM, . concentrations ranged between 55.5 ug/m® and 115.1 pg/m?>.

The elevated concentrations of particulate matter in the laboratory environment may pose a
significant threat to the respiratory system, as they can cause toxicity depending on the substances
contained in their structure and the pollutants adsorbed on their surfaces (Ugranli et al., 2015).
Inhalable particles such as PM, . and PM,  are associated with serious health effects, including
pulmonary diseases, asthma, and other respiratory issues. PM, . particles, in particular, represent
a greater health risk because they can bypass the upper airways and become lodged in the lungs
(Gomes, 2002).

3.2. Metallic and organic micropollutants

With regard to the metallic and organic micropollutants present in the total particulate matter
collected from the laboratory atmosphere, Table 3 presents the concentrations of metals and the
PAH benzo(a)pyrene during the indoor air quality monitoring.

The analysis of metals present in the total suspended particulates collected during asphalt
processing revealed a predominance of calcium (Ca), magnesium (Mg), and zinc (Zn), with
higher concentrations observed in Samples 4 and 5, especially for Mg and Zn in Sample 5. The
presence of these elements is characteristic of mineral-based materials, such as crushed stone
(Gomes Neto et al., 2014; Achternbosch et al., 2005), which are widely used in asphalt mixtures.
Nickel (Ni) and vanadium (V) were not detected in any of the samples collected. The assessment of
these elements in particulate matter is analytically relevant, given their recognized toxic potential
and associated adverse effects on occupational health, including bronchitis, chronic coughing, kidney
impairment, and increased risk of lung and nasal cavity cancers (Lorenzoni, 2019; CETESB, 2022).
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Table 3: Average concentrations of metallic and organic micropollutants present in TSP

Ca Mg Zn Pb Ni Vv BaP
Coleta (pg/m®) (ug/m?) (ng/m?) (ug/m’) (ug/m’) (ng/m?) (ng/md)
oP-1 764 26.8 1.5 ND ND ND ND
oP2  96.1 45.9 2.6 ND ND ND 4.8
OoP-3 935 61.0 3.9 ND ND ND 6.4
OoP-4  98.8 35.5 3.3 ND ND ND ND
OP-5 1738 124.2 9.4 ND ND ND 6.6
OP-6  96.2 88.2 2.1 ND ND ND 5.5
NOP-1 18.4 5.2 ND ND ND ND ND

OP: operating; NOP: not operating; ND: not detected.

PAH concentrations in the laboratory environment ranged from 4.8 ng/m? to 6.4 ng/m?. A study
conducted by Xiu etal. (2020) analyzed PAH emissions from asphalt mixtures using portable chambers
placed over freshly laid asphalt. Those authors reported an average BaP concentration of 2.1 ng/m?,
which islower (about halfto one-third) than the values found in the present study. The European Union
has established a standard limit for benzo(a)pyrene of 1 ng/m? (European Union, 2004), while the
German Federal Environment Agency suggests a guideline value of 0.8 ng/m? for indoor environments
(UBA, 2020). The World Health Organization reports that a BaP concentration of 1.2 ng/m?, under
long-term exposure, may lead to an excess cancer risk on the order of 1 in 10,000 (WHO, 2010).

In the context studied, the results indicate that asphalt material synthesis in a laboratory has
produced atmospheric pollutant concentrations exceeding national and international recommended
limits, highlighting the need for integrated environmental control measures and individual protective
strategies in these settings. Respiratory protection for occupants becomes critical, particularly during
phases involving binder heating, hot-mix asphalt processing, aging, and specimen molding, all of
which release significant amounts of organic compounds in both gaseous and particulate phases.

Therefore, the use of respirators with combination cartridges (P100 filter coupled with activated
carbon), as recommended by NIOSH (2023), is required to provide effective protection against
both particulates and organic vapors.

In addition, PAHs can be absorbed through the skin, requiring the use of appropriate dermal
protective equipment. During the handling of heated asphalt binders and mixtures, the use of
Class 3 chemical-resistant gloves, in compliance with EN 374-1 standard (ISO, 2016), is essential.
It is also recommended to wear full-seal safety goggles or face shields, especially during tasks
with risk of splashes or projections, such as pouring hot asphalt binder.

From a built environment engineering perspective, enclosing the asphalt mixing area in a dedicated
room with restricted access and an independent ventilation system is a critical measure to limit
pollutant dispersion within the broader laboratory space. The facility is already equipped with
a local exhaust system over the asphalt mixer, with ducts that direct fumes directly outside the
building. However, ideally, this system should be installed together with the mixer in an isolated
area designated exclusively for asphalt processing (hot room).

Finally, considering the variability in user profiles and the need to reduce cumulative exposure,
it is advisable to establish organized operational routines, including prior scheduling of space
usage and limiting the number of individuals present simultaneously in the hot area. Implementing
rotational schedules helps minimize individual exposure time, promoting a safer working
environment aligned with good laboratory practices.
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4. CONCLUSION

The present study demonstrated that the production of asphalt mixtures in a laboratory
environment results in the significant emission of atmospheric pollutants, including inhalable
particles (PM,, and PM,,..), total suspended particulate (TSP), metals (Ca, Mg, and Zn), and toxic
organic compounds such as benzo(a)pyrene. The average concentrations of these contaminants
exceeded the limits established by national and international guidelines.

The substantial presence of fine particulate matter and PAHs in the indoor laboratory air
underscores the potential health risks to users’ respiratory and systemic health, potentially
contributing to the development of chronic diseases such as asthma, bronchitis, cardiovascular
disorders, and even cancer.

The detailed characterization of emissions makes a new contribution to addressing gaps in the
national literature regarding air quality in infrastructure laboratories. Thus, the findings not only
reinforce the urgency of implementing engineering control measures (such as compartmentalization
and localized exhaust systems), but also highlight the need for continuous use of appropriate
Personal Protective Equipment (PPE) and restructuring of laboratory routines. Limiting the
number of occupants, scheduling activities, and regularly monitoring air quality are recommended
strategies to mitigate the identified risks.

It is recommended that emissions generated during asphalt mixture production be monitored
both with the exhaust system turned off and activated, in order to evaluate the operational efficiency
of this environmental control system.

For future investigations, it is advisable to conduct indoor temperature measurements during
both morning and afternoon periods, exploring possible thermal variations due to direct solar
radiation on the west-facing laboratory facade. Additionally, internal noise levels during laboratory
activities should be assessed to verify whether sound levels remain within acceptable limits for
occupational environments.
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