Análise de deformações específicas de tração na fibra inferior de revestimento asfáltico através de instrumentação e métodos numéricos

Autores

  • Nielson Tôrres Neves de Carvalho Universidade Federal de Sergipe
  • Fernando Silva Albuquerque Universidade Federal de Sergipe

DOI:

https://doi.org/10.14295/transportes.v27i2.1579

Palavras-chave:

Instrumentação, Modelos numéricos, Deformação de tração.

Resumo

O uso de estimativas numéricas das tensões, deformações e deflexões resultantes do tráfego de veículos, para dimensionamento de pavimentos rodoviários, é bastante comum pela praticidade, porém pode trazer imprecisões, provocando superdimensionamento ou subdimensionamento das camadas do pavimento. Por sua vez, o uso da instrumentação, realizando medições diretas no pavimento, tende a fornecer maior exatidão. Dentre as respostas mecânicas críticas, destaca-se a deformação específica de tração na fibra inferior das camadas asfálticas, ligada ao processo de fadiga. Neste trabalho foi realizada avaliação dessa deformação medida através de sensor H-Gage, comparando em seguida com as estimativas numéricas através de modelagem com os métodos das múltiplas camadas elásticas e dos elementos finitos. Ambos os modelos numéricos apresentaram estimativas bem discrepantes das medições de campo, tendo diferença ainda maior nas respectivas previsões de vida de fadiga. O método das múltiplas camadas elásticas apresentou tendência a estimar menor vida de fadiga, enquanto o modelo proposto em elementos finitos tendeu a estimar maior vida de fadiga, à medida que se reduzia o atrito entre camadas.

Downloads

Não há dados estatísticos.

Referências

Abu-Farsakh, M.; J. Gu; G. Voyuadjis e Q. Chen (2014) Mechanical-empirical Analysis of the Results of Finite Element Analysis on Flexible Pavement with Geogrid Base Reinforcement. Internacional Journal of Pavement Engineering, v. 15, n. 9, p. 786-798. DOI: 10.1080/10298436.2014.893315.

ASTM (2015) ASTM E1876-09: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration. American Society for Testing and Materials, West Conshohocken, PA.

Balbo, J. T. (2007) Pavimentação Asfáltica: materiais, projeto e restauração. Oficina de Textos, 588 p.

Bastos, J. B. dos (2016) Considerações sobre a Deformação Permanente de Pavimentos Asfálticos no Dimensionamento Mecanístico-Empírico. Tese (doutorado). Programa de Pós-Graduação em Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, CE.

Beskou, N. D.; S. V. Tsinopoulos e D. D. Theodorakopoulos (2015) Dynamic Elastic Analysis of 3-D Flexible Pavements under Moving Vehicles: A unified FEM treatment. Soil Dynamics and Earthquake Engineering, v. 82, p. 63-72. DOI: 10.1016/j.soildyn.2015.11.013.

Bernucci, L. B.; L. M. G. da Motta; J. A. P. Ceratti e J. B. Soares (2010) Pavimentação Asfáltica: Formação Básica para Engenheiros. Associação Brasileira das Empresas Distribuidoras de Asfalto, Rio de Janeiro, RJ.

Boussinesq, J. (1885) Application des Potentiels a l’étude de l’equilibreet du Mouvement des Solids Elastiques, Gauthier-Villars, Paris.

Burmister, D. M. (1945a) The General Theory of Stresses and Displacements in Layered Systems I. Journal of Applied Physics, v. 16, n. 2, p. 89-94. DOI: 10.1063/1.1707558.

Burmister, D. M. (1945b) The General Theory of Stresses and Displacements in Layered Soil Systems II. Journal of Applied Physics, v. 16, n. 3, p. 126-127. DOI: 10.1063/1.1707562.

Calderón, W. R. e M. R. P. Muños (2015) Three-dimensional Modeling of Pavement with Dual Load Using Finite Element. Dyna, v. 82, n. 189, p. 30-38. DOI: 10.15446/dyna.v82n189.41872.

CONTRAN (1998) Resolução nº 12, de 06 de fevereiro de 1998. Conselho Nacional de Trânsito, Brasília, DF.

CONTRAN (2015) Resolução nº 526, de 20 de abril de 2015. Conselho Nacional de Trânsito, Brasília/DF.

Costa, G. M. (2017) Método de ressonância por impacto: Obtenção de curvas mestras de módulo dinâmico e ângulo de fase em misturas asfálticas brasileiras. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Sergipe, São Cristóvão, SE.

Deusen, D. A. V; D. E. Newcomb e J. F. Labuz (1992) A Review of Instrumentation Technology for the Minnesota Road Research Project. Research Administration and Development Section Office of Materials and Research Minnesota Department of Transportation. Minnesota.

DNIT (2006) DNIT. 031/2006 – ES. Pavimentos Flexíveis - Concreto asfáltico – Especificação de Serviço. Diretoria de Planejamento e Pesquisa, Departamento Nacional de Infraestrutura de Transportes, Rio de Janeiro, RJ.

DNIT (2008) Identificação de Sistemas de Pesagem em Movimento: Projeto de Instrumentação para Medição de Deformação do Pavimento. Departamento Nacional de Infraestrutura de Transportes, Santa Catarina.

Dong, Z.; Y. Tan; S. Li e L. Cao (2012) Rutting Mechanism Analysis of Heavy-duty Asphalt Pavement Based on Pavement Survey, Finite Element Simulation, and Instrumentation. Journal of Testing and Evaluation, v. 40, n. 7, p. 1-10. DOI: 10.1520/JTE20120162.

Elseifi, M. A.; M. A. Mohammad e Z. J. Zhang (2012) Assessment of Stress and Strain Instrumentation in Accelerated-Pavement Testing. International Journal of Pavement Research and Technology, v. 5, n. 2, p. 121-127. DOI: 10.6135/ijprt.org.tw/2012.5(2).121.

Franco, F. A. (2007) Método de Dimensionamento Mecanístico-Empírico de Pavimentos Asfálticos: Sispav. Tese (doutorado). COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

Fritzen, M. A. (2016) Desenvolvimento e Validação de Função de Transferência para Previsão do Dano por Fadiga em Pavimentos Asfálticos. Tese (doutorado). COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

Gonçalves, F. P. (2002) Estudo do Desempenho de Pavimentos Flexíveis a Partir de Instrumentação e Ensaios Acelerados. Tese (doutorado). Programa de Pós-Graduação em Engenharia Civil, UFRGS, Porto Alegre.

Holanda, A. S.; E. Parente Jr.; T. D. P. Araújo; L. T. B. Melo; F. Evangelista Jr. e J. B. Soares (2006) Finite Element Modeling of Flexible Pavements. In: Iberian Latin- American Congress on Computational Methods in Engineering (CILAMCE), Anais. Belém, PA.

Ioannides, A. M. e L. Khazanovich (1998) General formulation for multilayered pavement systems. Journal of Transportation Engineering, v. 124, n. 1, p. 82-90. DOI: 10.1061/(ASCE)0733-947X(1998)124:1(82).

Kim, Y. R.; C. Baek; B. S. Underwood; V. Subramanian; M. N. Guddati e K. Lee. (2008) Application of Viscoelastic Continuum Damage Model Based Finite Element Analysis to Predict the Fatigue Performance of Asphalt Pavements. KSCE Journal of Civil Engineering, v. 12, p. 109-120. DOI: 10.1007/s12205-008-0109-x.

Kyowa (2011) Strain Gages. KYOWA Eletronic Instruments CO LTD.

Leiva-Villacorta, F. e D. H. Timm (2012) Simulating the effects of instrumentation on measured pavement response. In: Jones, D.; J. Harvey; A. Mateos e I. Al-Qadi. Advances in Pavement Design through Full-scale Accelerated Pavement Testing. Taylor & Francis Group, p. 153-161. DOI: 10.1201/b13000-23.

Li, Y.; E. Onodera e A. Chiba (2010) Friction Coefficient in Hot Compression of Cylindrical Sample. Materials Transactions, v. 51, n. 7, p. 1210-1215. DOI: 10.2320/matertrans.M2010056.

Madenci, E. e I. Guven (2006) The Finite Element Method and Applications in Engineering Using ANSYS®. Springer.

Matos, L. J. S. (2015) Análise de Tensões Verticais em Estrutura de Pavimento Semirrígido Instrumentado Sob Carregamento Variado. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Sergipe, São Cristóvão, SE.

Nascimento, L. A. H. (2015) Implementation and Validation of the Viscoelastic Continuum Damage Theory for Asphalt Mixture and Pavement Analysis in Brazil. North Carolina State University.

Nakasone, Y.; S. Yoshimoto e T. A. Stolarski (2006) Engineering Analysis with ANSYS Software. Butterworth-Heinemann.

NCHRP/TRB (2004) Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Appendix RR: Finite Element Procedures for Flexible Pavement Analysis. Illinois.

Pelletier, H.; J. Krierb e C. Gauthiera (2011) Influence of local friction coefficient and strain hardening on the scratch resistance of polymeric surfaces investigated by finite element modeling. Procedia Engineering, v. 10, p. 1772-1778. DOI: 10.1016/j.proeng.2011.04.295.

Saevarsdottir, T. e S. Erlingsson (2016) Deformation Modelling of Instrumented Flexible Pavement Structure. Procedia Engineering, v. 143, p. 937-944. DOI: 10.1016/j.proeng.2016.06.076.

SAPEM (2014) South African Pavement Engineering Manual. The South African National Roads Agency Ltd.

Silva, S. de A. T. e; J. B. dos S. Bastos e J. B. Soares (2015) Influência da aderência na análise de pavimentos asfálticos. In: 44ª Reunião Anual de Pavimentação, 18º Encontro Nacional de Conservação Rodoviária, Anais. Foz do Iguaçu, PR.

Souza, F. V. e J. B. Soares (2003) Considerações sobre Módulo Resiliente e Módulo Dinâmico em Misturas Asfálticas com Base na Teoria da Viscoelasticidade. In: Congresso Ibero-Latinoamericano do Asfalto, Anais, Quito.

Teixeira, V. F.; F. V. de Souza e J. B. Soares (2007) Modelagem da Vida de Fadiga e do Acúmulo de Deformações Permanentes em Pavimentos Asfálticos por Meio de um Modelo de Dano Contínuo. Revista Transportes, v. 15, n. 2. DOI: 10.14295/transportes.v15i2.32.

Trzepieciński, T. e H. G. Lemu (2015) Proposal for an Experimental-Numerical Method for Friction Description in Sheet Metal Forming. Journal of Mechanical Engineering, v. 61(2015)6, p. 383-391. DOI: 10.5545/sv-jme.2015.2404.

Yoder, E. J. e M. W. Witczak, (1975) Principles of pavement design. John Wiley & Sons, New York, NY.

Downloads

Publicado

31-08-2019

Como Citar

Carvalho, N. T. N. de, & Albuquerque, F. S. (2019). Análise de deformações específicas de tração na fibra inferior de revestimento asfáltico através de instrumentação e métodos numéricos. TRANSPORTES, 27(2), 56–72. https://doi.org/10.14295/transportes.v27i2.1579

Edição

Seção

Artigos