Mechanical feasibility of using red mud as filler in asphalt mixtures to improve permanent deformation

Autores

  • Mayara Sarisariyama Siverio Lima Programa de Pós-Graduação em Engenharia Civil (PPGEC) da Universidade Federal de Santa Catarina
  • Liseane Padilha Thives Universidade Federal de Santa Catarina, Departamento de Engenharia Civil https://orcid.org/0000-0002-4782-2496

DOI:

https://doi.org/10.14295/transportes.v28i2.1847

Palavras-chave:

red mud, permanent deformation, filler

Resumo

A lama vermelha é um resíduo sólido resultante do processamento do minério de bauxita para obtenção da alumina (óxido de alumínio – Al2O3), que é o principal composto químico para produzir alumínio. O Brasil possui uma grande reserva de bauxita no estado do Pará e o minério é processado em larga escala. No entanto, no país, a lama vermelha tem sido armazenada inadequadamente no meio ambiente. O Pará está situado no norte do Brasil e apresenta alta temperatura durante todo o ano. O elevado volume de tráfego e as altas temperaturas contribuíram para o surgimento precoce de defeitos nos revestimentos asfálticos dos pavimentos flexíveis. Este estudo laboratorial visa à introdução deste resíduo como fíler em misturas asfálticas densas. Para tanto, foram produzidas misturas de asfalto com 3%, 5% e 7% de lama vermelha (tamanho nominal entre 0,02 a 2.800 micrometros). Como referência, foi produzida uma mistura convencional com 7% de fíler de pó de pedra (tamanho nominal inferior a 0,075 mm). A resistência à deformação permanente das misturas foi avaliada através do simulador de tráfego francês. Como resultado, a mistura com 5% de lama vermelha apresentou o melhor desempenho à deformação permanente e obteve, aos 30.000 ciclos, a porcentagem de afundamento de 3,5%. As misturas asfálticas com lama vermelha apresentaram bom desempenho, com redução da deformação permanente de 12,63 a 42,62% em relação à mistura de referência. A lama vermelha como fíler em misturas asfálticas mostrou ser uma opção viável para reutilizar este resíduo, além de ser uma alternativa ecologicamente adequada. 

Downloads

Não há dados estatísticos.

Biografia do Autor

Mayara Sarisariyama Siverio Lima, Programa de Pós-Graduação em Engenharia Civil (PPGEC) da Universidade Federal de Santa Catarina

Doutoranda do Programa de Pós-Graduação em Engenharia Civil (PPGEC) da Universidade Federal de Santa Catarina

Liseane Padilha Thives, Universidade Federal de Santa Catarina, Departamento de Engenharia Civil

Professora Associada e atua em ensino e pesquisa no Departamento de Engenharia Civil e no Programa e Pós-Graduação em Engenharia Civil da Universidade Federal de Santa Catarina. Áreas de atuação: pavimentação, reologia, pavimentos drenantes, comportamento mecânico, resíduos, emissões, ciclo de vida.

Referências

AASHTO (2011) M 323 – Standard specification for Superpave volumetric mix design. American Association of State Highway and Transportation Officials. Washington, D.C., USA.

AASHTO (2012) R 35-12 – Standard practice for Superpave volumetric design for hot-mix asphalt (HMA). American Association of State Highway and Transportation Officials. Washington, D.C, USA.

ABNT (1995) NBR 6502/95 – Rochas e solos. Associação Brasileira de Normas Técnicas. Rio de Janeiro/RJ, Brasil. [In Portuguese].

ABNT (2004) NBR 10.004 – Resíduos sólidos - Classificação. Associação Brasileira de Normas Técnicas. Rio de Janeiro/RJ, Bra-sil. [In Portuguese].

AFNOR (1993) NF-P 98-253-1 – Préparation des mélanges hydrocarbonés, Partie 1: essai d'orniérage. Association Française de Normalisation, AFNOR. France.

AFNOR (1997) NF-P 98-250-2 – Essais relatifs aux chaussées - préparation des mélanges hydrocarbonés, Partie 2: compactage des plaques. Association Française de Normalisation. France.

Ahmad, J.; Abdul Rahman, M. Y. and M. R. Hainin (2011). Rutting evaluation of dense graded hot mix asphalt mixture. Inter-national Journal of Engineering & Technology, IJET-IJENS, v.11 n. 05, p. 56–60.

Al-Shamsi, K.; Hassan, H. F. and L. N. Mohammed (2017). Effect of low VMA in hot mix asphalt on load-related cracking re-sistance. Construction and Building Materials, v. 149, p. 386–394.

Antunes, M. L. P.; Conceição, F. T. D. and G. R. B. Navarro (2011). Caracterização da Lama Vermelha Brasileira (Resíduo do Refino da Bauxita) e Avaliação de suas Propriedades para Futuras Aplicações. 3rd International Workshop Advances in Cleaner Production. São Paulo, Brazil. [In Portuguese].

ASTM (2013) ASTM C 88 – Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. American Society of Testing and Materials, USA.

ASTM (2012) ASTM C 127 – Standard test method for density, relative density (specific gravity), and absorption of coarse aggre-gate. American Society of Testing and Materials, USA.

ASTM (2006) ASTM C 131 – Standard test method for resistance to degradation of small-size aggregate by abrasion and impact in the Los Angeles machine. American Society of Testing and Materials, USA.

ASTM (2013) ASTM D 5 – Standard test method for penetration of bituminous materials. American Society of Testing and Ma-terials, USA.

ASTM (2014) ASTM D 36 – Standard test method for softening point of bitumen (ring-and-ball apparatus). American Society of Testing and Materials, USA.

ASTM (2013) ASTM D 4402 – Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. American Society of Testing and Materials, USA.

Bertocchi, A. F; Ghiani, M.; Peretti, R. and A. Zucca (2006). Red mud and fly ash for remediation of mines sites contaminated with As, Cd, Cu, Pb e Zn. Journal of Hazardous Materials , v.134, p. 112–119.

Brasil (1998). DNER ME 083/98 – Agregados – análise granulométrica. Norma rodoviária. Departamento Nacional de Estradas de Rodagem/Departamento Nacional de Infraestrutura de Transportes. Rio de Janeiro/RJ, Brasil. [In Portuguese].

Brasil (2006a). DNIT 031/06-ES – Pavimentos flexíveis - concreto asfáltico, Especificação de serviço. Norma rodoviária. Depar-tamento Nacional de Infraestrutura de Transportes. Rio de Janeiro/RJ, Brasil. [In Portuguese].

Brasil (2006b). DNIT 095/06-EM – Cimentos asfálticos de petróleo - Especificação de material. Norma rodoviária. Departamen-to Nacional de Infraestrutura de Transportes. Rio de Janeiro/RJ, Brasil. [In Portuguese].

Brasil (2016). Sumário Mineral 2015. Departamento Nacional de Produção Mineral. ISSN 0101 2053, 2016. [In Portuguese].

Brown, E. R.; Kandhal, P. S. and J. Zhang (2001). Performance testing for hot mix asphalt. NCAT Report n. 01-05. National Cen-ter for Asphalt Technology – NAPA. Auburn/AL, USA.

Brunori, C.; Cremisini C.; Massanisso, P.; Pinto, V. and L. Torricelli (2005). Reuse of a treated red mud bauxite waste: studies on environmental compatibility. Journal of Hazardous Materials, v.117, p. 55–63.

DOI: 10.1016/j.jhazmat.2004.09.010.

Chadbourn, B. A.; Skok, E. L.; Newcomb, D. E.; Crow, B. L. and S. Spindler (1999). The effect of voids in mineral aggregate (VMA) on hot-mix asphalt pavements. Final Report n. MN/RC – 2000-13. University of Minnesota, Minneapolis, MN, USA.

DNER (1995) – DNER-ME 084 – Agregado miúdo – Determinação da densidade real. Departamento Nacional de Estradas de Rodagem, Rio de Janeiro, Brasil. [In Portuguese].

DNER (1994) – DNER-ME 085 – Material finamente pulverizado – Determinação da massa específica real. Departamento Naci-onal de Estradas de Rodagem, Rio de Janeiro, Brasil. [In Portuguese].

FHWA (2001). Superpave mixture: design guide. Federal Highway Administration. United States Department of Transportation. Westrack Forensic Team Consensus Report. Washington, D.C., USA.

Habashi, F. (2005). A short history of hydrometallurgy. Hydrometallurgy, v. 79, p. 15–22. DOI: 10.1016/j.hydromet.2004.01.008.

Hanumanth Rao, C. V.; Ganapati Naidu, G.; Satyanayarana, C. H. V. and S. Adiseshu (2012). Application of GGBS stabilized red mud in road construction. Journal of Engineering (IOSRJEN), v. 2, n. 8, p. 14–20. ISSN: 2250-3021.

Hildebrando, E. A.; Souza, J. A. S.; Angélica, R. S. and R. F. Neve (2013). Application of bauxite waste from Amazon region in the heavy clay industry. Materials Research, v. XVI, n. 6, p. 1418–1422. DOI: 10.1590/S1516-14392013005000145.

Hind, R. A.; Bhargava, S. K. and S. C. Grocott (1999). The surface chemistry of Bayer process solids: a review. J. Colloids and surfaces A: Physicochemical and engineering aspects, 146, 1999. p. 359–374. DOI: 10.1016/S0927-7757(98)00798-5.

Hislop, P. W. and K. J. Coree (2000). VMA as a design parameter in hot-mix asphalt. Proceedings Mid-Continent Transporta-tion Symposium 2000. Center for Transportation Research and Education, Iowa State University, USA.

Jitsangiam, P. and H. R. Nikraz (2013). Sustainable use of coarse bauxite residue for alternative roadway construction materi-als. Australian Journal of Civil Engineering, v. 11, n. 1, p. 1–12. DOI: 10.7158/14488353.2013.11463987.

Kavas, T. (2006). Use of boron waste as a fluxing agent in production of red mud brick. Building and Environment, v. 41, p. 1779–1783. DOI: 10.1016/j.buildenv.2005.07.019.

Komnitsas, K.; Bartzas, G. and I. Paspaliaris (2004). Efficiency of limestone and red mud barriers: laboratory column studies Miner. Minerals Engineering, v. 17, p. 183–194. DOI: 10.1016/j.mineng.2003.11.006.

Li, L.Y. (1998). Properties of red mud tailings produced under varying process conditions. Journal of Environmental Engineer-ing, v. 124(3); 254–264. DOI: 10.1061/(ASCE)0733-9372(1998)124:3(254).

Li, Y. (2014). Digital mix design for performance optimization of asphalt mixture. Thesis. Virginia Polytechnic Institute and State University, Virginia, USA.

Mccormick, P. G.; Pícaro, T. and P. A. I. Smith (2000). Mechanochemical treatment of high silica bauxite with lime. Minerals Engineering, v. 15, p. 211–214. DOI: 10.1007/978-3-319-48179-1_5.

Menzie, W. D.; Barry, J. J.; Bleiwas, D. I.; Bray, E. L.; Goonan T. G. and G. Matos (2010). The global flow of aluminum from 2006 through 2025. United States Department of the Interior United States Geological Survey, Reston, Virginia, USA.

Motta, L. M. G. and L. M. F Leite (2000). Efeito do fíler nas características mecânicas das misturas asfálticas. In: XI PANAM. Brasil, p. 09-19. [In Portuguese].

Nevelt, G. and H. Thanfold (1988). Evaluation of the resistance to deformation of different road structures and asphalt mix-tures determined in the pavement-rutting tester. Proceeding of the Association of Asphalt Paving Technologists, vol. 57, p. 320–345.

Power, G.; Gräfe, M. and C. Klauber (2009). Review of current bauxite residue management, disposal and storage: practices, engineering & science. The Commonwealth Scientific and Industrial Research Organization (CSIRO). CSIRO document DMR-3608. Austrália.

Sampaio, J. A.; Andrade, M. C. and A. J. B. Dutra (2005). Bauxita. Rochas & Minerais Industriais. Ed. Luz, Rio de Janeiro, Brasil. ISBN 85-7227-204-6. [In Portuguese].

Sousa, J. B.; Solaimanian, M. and S. L. Weissman (1994). Development and use of the repeated shear test (constant height): an optional Superpave mix design tool – SHRP-A-698. Strategic Highway Research Program. National Council. Washington, D.C., USA.

Sutar, H.; Mishra, S. C.; Sahoo, S. K.; Chakraverty, A. P. and H. S. Maharana (2014). Progress of red mud utilization: an over-view. American Chemical Science Journal, v. 4(3), 255–279. DOI: 10.9734/ACSJ/2014/7258.

Tabereaux, T. Alton (2010). Hungarian red mud disaster: addressing environmental liabilities of alumina, residue storage & disposal. Series the discovery, commercialization, and development of the aluminum industry in France. Light Metal Age, v. 68, p. 22-24.

Tigdemir, M. (2008). Dynamic permanent deformation testing of asphalt mixes and deformation waveform analysis. Indian Journal of Engineering & Materials Sciences, v. 15, p. 29–35. ISSN 0971-4588.

U.S. Geological Survey (2016). Mineral Commodity Summaries. Available in: https://minerals.usgs.gov/minerals/pubs/commodity/bauxite/mcs-2016-bauxi.pdf

Wang, S.; Ang, H. M. and M. O. Tadé (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environ-mentally benign processes. Chemosphere, v. 72, p. 1621–1635. DOI: 10.1016/j.chemosphere.2008.05.013.

Xu, T.; Wang, H.; Li, Z. and Y. Zhao (2014). Evaluation of permanent deformation of asphalt mixtures using different laborato-ry performance tests. Construction and Building Materials , v.53, p. 561–567.

DOI: 10.1016/j.conbuildmat.2013.12.015.

Wessling, D. H.; L. P. Specht and Ceratti, J. A. P. (2003). Estudo laboratorial do comportamento de misturas em concreto asfáltico com diferentes tipos de filers. 34a Reunião Anual de Pavimentação, Associação Brasileira de Pavimentação (ABPv). Cam-pinas, S.P., Brasil. [In Portuguese].

Yang, H.; Chenb, C.; Panb, L.; Lub, H.; Sunb, H. and X. Hub (2009). Preparation of double-layer glass-ceramic/ceramic tile from bauxite tailings and red mud. Journal of the European Ceramic Society, v. 29, p. 1887–1894. DOI: DOI: 10.1016/j.jeurceramsoc.2009.01.007.

Yang, J. and B. Xiao (2008). Development of unsintered construction materials red mud wastes produced in the sintering alumina process. Construction and Building Materials, n. 22, p. 2299–2307. DOI: 10.1016/j.conbuildmat.2007.10.005

Yang, Q. and J. Ning (2011). The environmental influence of asphalt pavement and countermeasures. Energy Procedia, v. 5, p. 2432–2436. DOI: 10.1016/j.egypro.2011.03.418.

Downloads

Publicado

15-05-2020

Como Citar

Lima, M. S. S., & Thives, L. P. (2020). Mechanical feasibility of using red mud as filler in asphalt mixtures to improve permanent deformation. TRANSPORTES, 28(2), 1–13. https://doi.org/10.14295/transportes.v28i2.1847