Assessing vulnerabilities in transport networks: a graph-theoretic approach
DOI:
https://doi.org/10.14295/transportes.v29i1.2250Keywords:
Network Vulnerability, Resilience, Complex NetworksAbstract
The design and maintenance of sustainable and resilient transport systems depend on the identification of possible vulnerabilities before crises occur so that infrastructure and strategies of action are effectively developed for times of crisis. However, given the complexity of transport systems, the proposed methods for assessing vulnerabilities are difficult to implement and require data inaccessible to most Brazilian municipalities. Given this scenario, and intending to simplify the preliminary analysis of a system in the search for vulnerabilities, the objective of this paper is to present the centrality measure from graph theory that best represents the local vulnerability of inland transport networks in Brazilian cities. The method proposed in the study was the systematic degradation of the network measuring the decay in continuity on the system, defined as the proportion of valid paths that remain in the network after the removal of a certain number of roads. The results pointed out the betweenness centrality is the metric that best reflects vulnerability since the attack strategy that progressively removes the roads with greater betweenness centrality presents a faster decay of continuity. With this result, we expect to facilitate the detection of vulnerabilities in transport systems and to guide the creation of more resilient transport systems.
Downloads
References
Appert, M. and C. Laurent (2013) Measuring urban road network vulnerability using graph theory: the case of Montpellier’s road network theory: the case of Montpellier’s road network. La mise en carte des risques naturels, pp. 1–22.
Berche, B.; C. Von Ferber; T. Holovatch and Y. Holovatch (2009) Resilience of public transport networks against attacks. Euro-pean Physical Journal B, 71(1), pp. 125–137. doi: 10.1140/epjb/e2009-00291-3.
Cox, A.; F. Prager and A. Rose (2011) Transportation security and the role of resilience: A foundation for operational metrics. Transport Policy, 18(2), pp. 307–317. doi: 10.1016/j.tranpol.2010.09.004.
Folke, C.; S. R. Carpenter; B. Walker; M. Scheffer; T. Chapin and J. Rockström (2010) Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society, 15(4). doi: 10.5751/ES-03610-150420.
Instituto Brasileiro de Geografia e Estatística (IBGE) (2018) Estimativas de população. Available at: <https://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2018/POP2018_20210331.xls> (Accessed: 23/March/2019).
Ip, W. H. and D. Wang (2011) Resilience and friability of transportation networks: Evaluation, analysis and optimization. IEEE Systems Journal, 5(2), pp. 189–198. doi: 10.1109/JSYST.2010.2096670.
Leu, G.; H. Abbass and N. Curtis (2010) Resilience of ground transportation networks: A case study on Melbourne. ATRF 2010: 33rd Australasian Transport Research Forum.
Litman, T. (2006) Lessons from Katrina and Rita: What major disasters can teach transportation planners. Journal of Trans-portation Engineering, 132(1), pp. 11–18. doi: 10.1061/(ASCE)0733-947X(2006)132:1(11).
Lu, Q. C.; Z. R. Peng and J. Zhang (2015) Identification and prioritization of critical transportation infrastructure: Case study of coastal flooding. Journal of Transportation Engineering, 141(3). doi: 10.1061/(ASCE)TE.1943-5436.0000743.
Martins, M. C. M.; A. N. Rodrigues da Silva and N. Pinto (2019) An indicator-based methodology for assessing resilience in urban mobility. Transportation Research Part D: Transport and Environment, 77, pp. 352–363. doi: 10.1016/j.trd.2019.01.004.
Mattsson, L. G. and E. Jenelius (2015) Vulnerability and resilience of transport systems - A discussion of recent research. Transportation Research Part A: Policy and Practice, 81, pp. 16–34. doi: 10.1016/j.tra.2015.06.002.
Morelli, A. B. and A. L. Cunha (2019) Measuring urban resilience: A road network-oriented method. Available at: <http://arxiv.org/abs/1912.01739>.
Newman, M. (2010) Networks: An Introduction. doi: 10.1093/acprof:oso/9780199206650.001.0001.
Newman, P.; T. Beatley and H. Boyer (2009) Resilient cities: Responsing to peak oil and climate change. Australian Planner, 46(1), p. 59. doi: 10.1080/07293682.2009.9995295.
OpenStreetMap (2019). Available at: (Accessed: 27/March/2019)
Rodríguez-Núñez, E. and J. C. García-Palomares (2014) Measuring the vulnerability of public transport networks. Journal of Transport Geography, 35, pp. 50–63. doi: 10.1016/j.jtrangeo.2014.01.008.
Wang, Y.; H. Liu; K. Han; T. L. Friesz and T. Yao (2015) Day-to-day congestion pricing and network resilience. Transportmetrica A: Transport Science, 11(9), pp. 873–895. doi: 10.1080/23249935.2015.1087234.
Westrum, R. (2012) A typology of resilience situations. Resilience Engineering: Concepts and Precepts, pp. 55–66.
Zhang, X.; E. Miller-Hooks and K. Denny (2015) Assessing the role of network topology in transportation network resilience. Journal of Transport Geography, 46, pp. 35–45. doi: 10.1016/j.jtrangeo.2015.05.006.
Downloads
Published
Versions
- 2021-05-17 (2)
- 2021-04-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 André Borgato Morelli, Andre Luiz Cunha

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- The authors retain the copyright and grant Transportes the right of first publication of the manuscript, without any financial charge, and waive any other remuneration for its publication by ANPET.
- Upon publication by Transportes, the manuscript is automatically licensed under the Creative Commons License CC BY 4.0 license. This license permits the work to be shared with proper attribution to the authors and its original publication in this journal.
- Authors are authorized to enter into additional separate contracts for the non-exclusive distribution of the version of the manuscript published in this journal (e.g., publishing in an institutional repository or as a book chapter), with recognition of the initial publication in this journal, provided that such a contract does not imply an endorsement of the content of the manuscript or the new medium by ANPET.
- Authors are permitted and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal websites) after the editorial process is complete. As Transportes provides open access to all published issues, authors are encouraged to use links to the DOI of their article in these cases.
- Authors guarantee that they have obtained the necessary authorization from their employers for the transfer of rights under this agreement, if these employers hold any copyright over the manuscript. Additionally, authors assume all responsibility for any copyright infringements by these employers, releasing ANPET and Transportes from any responsibility in this regard.
- Authors assume full responsibility for the content of the manuscript, including the necessary and appropriate authorizations for the disclosure of collected data and obtained results, releasing ANPET and Transportes from any responsibility in this regard.