Ensaio semicircular bending dinâmico para avaliação da fadiga em misturas asfálticas

Autores

DOI:

https://doi.org/10.58922/transportes.v33.e3101

Palavras-chave:

Ensaios laboratoriais, IDT, SCB, Mapeamento sistemático, Análise estatística, MeDiNa

Resumo

A determinação da vida de fadiga de misturas asfálticas é uma etapa importante para a previsão de desempenho de revestimentos flexíveis, sendo necessário empregar ensaios laboratoriais que representem adequadamente os mecanismos que levam à ruptura de misturas por fadiga. Atualmente, métodos como Tração Diametral à Tensão Controlada (IDT), Flexão em Viga Quatro Pontos (4PB) e Tração Direta (TD) são utilizados para esta finalidade. Devido à praticidade e rapidez, ensaios de fratura estáticos, como o Semi-Circular Bending também são amplamente utilizados, porém não permitem determinar a vida de fadiga. Este estudo objetiva investigar a viabilidade do ensaio SCB dinâmico como alternativa para obter os coeficientes de vida de fadiga de forma a otimizar as análises necessárias ao dimensionamento mecanístico-empírico de pavimentos. Inicialmente, foram realizados dois mapeamentos sistemáticos para respaldar as decisões metodológicas. Na sequência, foram realizados ensaios SCB estáticos e dinâmicos e ensaios de fadiga IDT em duas misturas asfálticas. Os resultados foram comparados estatisticamente para avaliar a concordância entre os métodos e indicaram que, embora houvesse diferenças nos coeficientes da curva de fadiga obtidos pelos ensaios dinâmicos SCB e IDT, ela não é estatisticamente significativa e ambos apresentaram classificações semelhantes quanto ao desempenho à fadiga.

Downloads

Não há dados estatísticos.

Referências

AASHTO (2018) TP 107: Determining the Damage Characteristic Curve of Asphalt Mixtures from Direct Tension Cyclic Fatigue Tests. Washington: AASHTO.

AASHTO (2017) T 321: Determining the Fatigue Life of Compacted Asphalt Mixtures Subjected to Repeated Flexural Bending. Washington: AASHTO.

AASHTO (2016) TP 124: Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using Semicircular Bend Geometry (SCB) at Intermediate Temperature. Washington: AASHTO.

AASHTO (2013) TP 105: Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semi-Circular Bend Geometry (SCB). Washington: AASHTO.

Abhijith, B.S.; A. Raj; R. Varma et al. (2023) Influence of glass fibre grid and its placement on the fatigue damage of asphalt mixture. Materials and Structures, v. 56, n. 7, p. 140. DOI: 10.1617/s11527-023-02221-w. DOI: https://doi.org/10.1617/s11527-023-02221-w

Adnan, A.M.; C. Lü; X. Luo et al. (2024) Fatigue performance of graphene oxide modified asphalt mixture: experimental investigation and response surface methodology. Petroleum Science and Technology, v. 42, n. 18, p. 2340-2357. DOI: 10.1080/10916466.2023.2175854. DOI: https://doi.org/10.1080/10916466.2023.2175854

Ahmed, T.M.; T.Y. Ahmed and A. Al-Hdabi (2020) Evaluating fatigue performance of hot-mix asphalt using degradation parameters. Proceedings of the Institution of Civil Engineers - Construction Materials, v. 173, n. 3, p. 111-122. DOI: 10.1680/jcoma.17.00066. DOI: https://doi.org/10.1680/jcoma.17.00066

Alamnie, M.M.; E. Taddesse and I. Hoff (2023) A study on permanent deformation and fatigue damage interaction in asphalt concrete. Construction & Building Materials, v. 407, p. 133473. DOI: 10.1016/j.conbuildmat.2023.133473. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133473

Alikhani, H. and M. Latifi (2022) Evaluation of the effect of Waste steel Shaving, damage severity and strain level on the healing behavior of asphalt mixtures at different damaging-healing cycles. Construction & Building Materials, v. 347, p. 128514. DOI: 10.1016/j.conbuildmat.2022.128514. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128514

Aragão, F.T.S.; D.A. Hartmann; Y.-R. Kim et al. (2014) Numerical–Experimental Approach to Characterize Fracture Properties of Asphalt Mixtures at Low Temperatures. Transportation Research Record: Journal of the Transportation Research Board, v. 2447, n. 1, p. 42-50. DOI: 10.3141/2447-05. DOI: https://doi.org/10.3141/2447-05

Bai, T.; Y. Liang; C. Li et al. (2022) Application and validation of fly ash based geopolymer mortar as grouting material in porous asphalt concrete. Construction & Building Materials, v. 332, p. 127154. DOI: 10.1016/j.conbuildmat.2022.127154. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127154

Bai, W. (2024) Basic characterization of three kinds of bio-asphalt and research on the low-temperature performance of bio-asphalt mixtures. Case Studies in Construction Materials, v. 20, p. e03353. DOI: 10.1016/j.cscm.2024.e03353. DOI: https://doi.org/10.1016/j.cscm.2024.e03353

Barghabany, P.; W. Cao; L.N. Mohammad et al. (2020) Relationships among chemistry, rheology, and fracture/fatigue performance of recovered asphalt binders and asphalt mixtures containing reclaimed asphalt pavement. Transportation Research Record: Journal of the Transportation Research Board, v. 2674, n. 10, p. 927-938. DOI: 10.1177/0361198120938779. DOI: https://doi.org/10.1177/0361198120938779

Benaboud, S.; M. Takarli; B. Pouteau et al. (2021) Fatigue process analysis of aged asphalt concrete from two-point bending test using acoustic emission and curve fitting techniques. Construction & Building Materials, v. 301, p. 124109. DOI: 10.1016/j.conbuildmat.2021.124109. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124109

Beyene, M.; M. Elwardany; J. Youtcheff et al. (2024) Proposed automated contrast-enhanced microscopical method for evaluating air void structure in compacted asphalt concrete mixtures. Construction & Building Materials, v. 419, p. 135532. DOI: 10.1016/j.conbuildmat.2024.135532. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135532

Bueno, L.D.; S.L. Schuster; L.P. Specht et al. (2022) Asphalt pavement design optimisation: a case study using viscoelastic continuum damage theory. The International Journal of Pavement Engineering, v. 23, n. 4, p. 1070-1082. DOI: 10.1080/10298436.2020.1788030. DOI: https://doi.org/10.1080/10298436.2020.1788030

Cavalcante, D.R. (2022) Influência da Variação de Umidade e da Frequência de Ensaio no Módulo de Resiliência e na Deformação Permanente de Solos. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil - Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás. Goiânia.

CEN (2010) Bituminous Mixtures – Test Methods for Hot Mix Asphalt Part 44: Crack Propagation by Semi-Circular Bending Test. Brussels: CEN.

Chen, X. (2019) Use of Semi-Circular Bend Test to Characterize Fracture Properties of Asphalt Concrete with Virgin and Recycled Materials. Dissertation (doctorate). Pennsylvania State University College of Engineering, Pennsylvania State University. Philadelphia. Available at: <https://etda.libraries.psu.edu/catalog/16829xxc137> (accessed 02/10/2025).

Covilla-Varela, E.; E. Turbay; R. Polo-Mendoza et al. (2023) Recycled Concrete Aggregates (RCA)-based asphalt mixtures: a performance-related evaluation with sustainability-criteria verification. Construction & Building Materials, v. 403, p. 133203. DOI: 10.1016/j.conbuildmat.2023.133203. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133203

CRAN (2024) The Comprehensive R Archive Network. Available at: <https://cran.rstudio.com/> (accessed 02/10/2025).

Cruz, G.K.A.; O.M. Melo Neto; S.M. Arruda et al. (2022) Influence of particle size selection methods on asphalt mixtures produced with lateritic aggregates. Construction & Building Materials, v. 314, p. 125201. DOI: 10.1016/j.conbuildmat.2021.125201. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125201

Curado, T.S. (2024) Avaliação das Características Microestruturais e Reológicas de Amostras de Argamassa Areia Asfalto (AAA). Tese (doutorado). Programa de Pós-Graduação em Engenharia Civil - Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás. Goiânia.

DNIT (2020) Manual de Utilização do programa MeDiNa. Brasília: DNIT.

DNIT (2018a) ME 183: Pavimentos Flexíveis - Ensaio de Fadiga por Compressão Diametral à Tensão Controlada – Método de Ensaio. Brasília: DNIT.

DNIT (2018b) ME 135: Pavimentação asfáltica – Misturas asfálticas – Determinação do módulo de resiliência - Método de ensaio. Brasília: DNIT.

Dong, S.; D. Wang; P. Hao et al. (2021) Quantitative assessment and mechanism analysis of modification approaches for cold recycled mixtures with asphalt emulsion. Journal of Cleaner Production, v. 323, p. 129163. DOI: 10.1016/j.jclepro.2021.129163. DOI: https://doi.org/10.1016/j.jclepro.2021.129163

Dyer, P.P.O.L.; G.J.L. Coppio; S.A. Silva et al. (2021) Mechanical and microstructural assessments of waste foundry sand in hot mix asphalt. Construction & Building Materials, v. 311, p. 125329. DOI: 10.1016/j.conbuildmat.2021.125329. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125329

Elwardany, M.; V. Veginati; A. Andriescu et al. (2024) Understanding the sensitivity of mixture cracking performance tests to binder properties and long-term aging. Transportation Research Record: Journal of the Transportation Research Board, v. 2678, n. 1, p. 335-49. DOI: 10.1177/03611981231170629. DOI: https://doi.org/10.1177/03611981231170629

Falchetto, A.C.; K.H. Moon; D. Wang et al. (2018) Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations. Road Materials and Pavement Design, v. 19, n. 3, p. 591-604. DOI: 10.1080/14680629.2018.1418722. DOI: https://doi.org/10.1080/14680629.2018.1418722

Feng, M.; Y., Zhibin; F., Zhen et al. (2021) Design and road performance of basalt fiber asphalt mixture based on response surface methodology. Journal of Functional Materials, v. 52, n. 12, p. 12137-12142. DOI: 10.3969/j.issn.1001-9731.2021.12.022.

Freire, R.A.; V.T.F. Castelo Branco and K.L. Vasconcelos (2014) Avaliação da resistência ao trincamento de misturas asfálticas compostas por agregados miúdos com diferentes tamanhos máximos nominais. Transportes, v. 22, n. 3, p. 117. DOI: 10.14295/transportes.v22i3.791. DOI: https://doi.org/10.14295/transportes.v22i3.791

Freitas, J.B.; L.R. Rezende and G.F.N. Gitirana Jr (2020) Prediction of the resilient modulus of two tropical subgrade soils considering unsaturated conditions. Engineering Geology, v. 270, p. 105580. DOI: 10.1016/j.enggeo.2020.105580. DOI: https://doi.org/10.1016/j.enggeo.2020.105580

Fritzen, M.A.; F.A.C.P. Franco; L.A. Nascimento et al. (2019) Classificação de misturas asfálticas quanto ao desempenho à fadiga. In Anais do 9° Congresso Rodoviário Português (Lisboa, Portugal). Lisboa: Laboratório Nacional de Engenharia Civil.

Gao, L.; F. Ni; C. Ling et al. (2016) Evaluation of fatigue behavior in cold recycled mixture using digital image correlation method. Construction & Building Materials, v. 102, p. 393-402. DOI: 10.1016/j.conbuildmat.2015.11.014. DOI: https://doi.org/10.1016/j.conbuildmat.2015.11.014

Godoi, L.C. (2017) Aplicação do Ensaio de Flexão em Amostra Semicircular para Avaliação de Trincamento de Misturas Asfálticas. Dissertação (mestrado). Universidade Federal do Rio Grande do Sul. Porto Alegre.

Guabiroba, J.V.O.C.; L.R.D. Rezende; L.X. Barroso et al. (2023) Fatigue and rutting study of asphalt mixtures produced in Goiás. Matéria, v. 28, p. e13232. DOI: 10.1590/s1517-707620230001.1332. DOI: https://doi.org/10.1590/s1517-707620230001.1332

Hu, G.; Q. Yang; X. Qiu et al. (2022) Use of DIC and AE for investigating fracture behaviors of cold recycled asphalt emulsion mixtures with 100% RAP. Construction & Building Materials, v. 344, p. 128278. DOI: 10.1016/j.conbuildmat.2022.128278. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128278

Jeong, J.; B. Shane Underwood and Y. Richard Kim (2022) Cracking performance predictions using index-volumetrics relationships with direct tension cyclic fatigue test and Illinois Flexibility Index Test (I-FIT). Construction & Building Materials, v. 315, p. 125631. DOI: 10.1016/j.conbuildmat.2021.125631. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125631

Jia, H.; H. Chen; Y. Sheng et al. (2022) Effect of laboratory aging on the stiffness and fatigue cracking of asphalt mixture containing bamboo fiber. Journal of Cleaner Production, v. 333, p. 130120. DOI: 10.1016/j.jclepro.2021.130120. DOI: https://doi.org/10.1016/j.jclepro.2021.130120

Kabir, S.F.; A. Ali; C. Purdy et al. (2023) Thermal cracking in cold regions’ asphalt mixtures prepared using high polymer modified binders and softening agents. The International Journal of Pavement Engineering, v. 24, n. 2, p. 2147523. DOI: 10.1080/10298436.2022.2147523. DOI: https://doi.org/10.1080/10298436.2022.2147523

Keshavarzi, B. and Y.R. Kim (2020) A dissipated pseudo strain energy-based failure criterion for thermal cracking and its verification using thermal stress restrained specimen tests. Construction & Building Materials, v. 233, p. 117199. DOI: 10.1016/j.conbuildmat.2019.117199. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117199

Kuchiishi, A.K.; K.C. Lee and B.S. Underwood (2023) Simplified protocol for fatigue cracking characterization of asphalt mixtures using the direct tension cyclic fatigue test. Construction & Building Materials, v. 363, p. 129828. DOI: 10.1016/j.conbuildmat.2022.129828. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129828

Li, C.; H. Cheng; L. Sun et al. (2024) Development of a new circular-plate bending fatigue test to measure fatigue behaviours of asphalt mixture. Construction & Building Materials, v. 450, p. 138651. DOI: 10.1016/j.conbuildmat.2024.138651. DOI: https://doi.org/10.1016/j.conbuildmat.2024.138651

Li, X.-J. and M.O. Marasteanu (2010) Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete. Experimental Mechanics, v. 50, n. 7, p. 867-76. DOI: 10.1007/s11340-009-9303-0. DOI: https://doi.org/10.1007/s11340-009-9303-0

Liang, R.; W. Yu and Z. Luo (2022) Laboratory investigation on pavement performance of basalt fiber-reinforced asphalt mixture under the coupling effect of freeze-thaw cycles and aging. Frontiers in Materials, v. 9, p. 930056. DOI: 10.3389/fmats.2022.930056. DOI: https://doi.org/10.3389/fmats.2022.930056

Lima, L.B.F.D.; J.P.S. Silva and L.R.D. Rezende (2023) Investigation of resilient modulus and permanent deformation of tropical soil with Reclaimed Asphalt Pavement. Transportation Geotechnics, v. 43, p. 101103. DOI: 10.1016/j.trgeo.2023.101103. DOI: https://doi.org/10.1016/j.trgeo.2023.101103

Liu, H.; A. Kuang; Z. Wang et al. (2023) Investigation on fracture and fatigue performance of cold recycling emulsified asphalt mixture based on acoustic emission parameters. Journal of Cleaner Production, v. 428, p. 139285. DOI: 10.1016/j.jclepro.2023.139285. DOI: https://doi.org/10.1016/j.jclepro.2023.139285

Liu, W.; S. Wang and X. Gu (2020) Improving microwave heating efficiency of asphalt concrete by increasing surface magnetic loss of aggregates. Road Materials and Pavement Design, v. 21, n. 4, p. 950-964. DOI: 10.1080/14680629.2018.1531778. DOI: https://doi.org/10.1080/14680629.2018.1531778

Lopes, L.N.; M.M. Farias and L.G.R. Mello (2021) Fatigue tests and damage analyses in modified binders and gap-graded asphalt mixtures with Reacted and Activated Rubber – RAR. Road Materials and Pavement Design, v. 22, n. 7, p. 1616-1636. DOI: 10.1080/14680629.2019.1710553. DOI: https://doi.org/10.1080/14680629.2019.1710553

Medina, J. and L.M.G. Motta (2015) Mecânica dos Pavimentos (3rd ed.). Rio de Janeiro: Editora Interciência.

Miranda, P.P.; T.S. Curado and L.R.D. Rezende (2024) Laboratory and statistical evaluation of the microstructural characteristics of Sand Asphalt Mortar. Transportes, v. 32, n. 3, p. e3014. DOI: 10.58922/transportes.v32i3.3014. DOI: https://doi.org/10.58922/transportes.v32i3.3014

Mora Valverde, M.K.; J.P. Aguiar Moya; M. Jiménez Acuña et al. (2021) Analysis of the variability associated with fatigue tests in asphalt mixes. Infraestructura Vial, v. 23, p. 20-30. DOI: 10.15517/iv.v23i41.44420. DOI: https://doi.org/10.15517/iv.v23i41.44420

Nguyen, M.L.; P. Hornych; X.Q. Le et al. (2021) Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid. Road Materials and Pavement Design, v. 22, p. S672-S689. DOI: 10.1080/14680629.2021.1906304. DOI: https://doi.org/10.1080/14680629.2021.1906304

Oliveira, J.A.; J.B. Soares; L.F.A.L. Babadopulos et al. (2023) Fundamentos de mecânica do dano e de viscoelasticidade para prever desempenho de misturas asfálticas quanto à fadiga. Transportes, v. 31, n. 3, p. e2745. DOI: 10.58922/transportes.v31i3.2745. DOI: https://doi.org/10.58922/transportes.v31i3.2745

Oliveira, M.S.; M.M.D. Farias and J.P.S. Silva (2022) Fatigue analysis of hot recycled asphalt mixtures with RAP incorporation. Case Studies in Construction Materials, v. 16, p. e01132. DOI: 10.1016/j.cscm.2022.e01132. DOI: https://doi.org/10.1016/j.cscm.2022.e01132

Orešković, M.; Š. Bohuš; A. Virgili et al. (2024) Simplified methodology for fatigue analysis of reinforced asphalt systems. Materials and Structures, v. 57, n. 2, p. 34. DOI: 10.1617/s11527-024-02305-1. DOI: https://doi.org/10.1617/s11527-024-02305-1

Ozer, H.; I.L. Al-Qadi; P. Singhvi et al. (2018) Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests. The International Journal of Pavement Engineering, v. 19, n. 3, p. 264-678. DOI: 10.1080/10298436.2017.1347435. DOI: https://doi.org/10.1080/10298436.2017.1347435

Parsif.al (2021) Perform Systematic Literature Reviews. Available at: <https://parsif.al/> (accessed 02/10/2025).

Radeef, H.R.; N. Abdul Hassan; M.Z.H. Mahmud et al. (2021) Characterisation of cracking resistance in modified hot mix asphalt under repeated loading using digital image analysis. Theoretical and Applied Fracture Mechanics, v. 116, p. 103130. DOI: 10.1016/j.tafmec.2021.103130. DOI: https://doi.org/10.1016/j.tafmec.2021.103130

Radeef, H.R.; N.A. Hassan; M.Z.H. Mahmud et al. (2022) Linear viscoelastic response of semi-circular asphalt sample based on digital image correlation and XFEM. Measurement, v. 192, p. 110866. DOI: 10.1016/j.measurement.2022.110866. DOI: https://doi.org/10.1016/j.measurement.2022.110866

Ragni, D.; M. Takarli; C. Petit et al. (2020) Use of acoustic techniques to analyse interlayer shear-torque fatigue test in asphalt mixtures. International Journal of Fatigue, v. 131, p. 105356. DOI: 10.1016/j.ijfatigue.2019.105356. DOI: https://doi.org/10.1016/j.ijfatigue.2019.105356

Ren, D.; H. Yang; J. Xu et al. (2024) Investigation on fatigue damage of buton rock asphalt mixtures using semi-circular bending (SCB) and digital image correlation (DIC) techniques. Construction & Building Materials, v. 451, p. 138797. DOI: 10.1016/j.conbuildmat.2024.138797. DOI: https://doi.org/10.1016/j.conbuildmat.2024.138797

Saha, G. and K.P. Biligiri (2016) Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Construction & Building Materials, v. 105, p. 103-112. DOI: 10.1016/j.conbuildmat.2015.12.046. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.046

Saleh, N.F.; B. Keshavarzi; F. Yousefi Rad et al. (2020) Effects of aging on asphalt mixture and pavement performance. Construction & Building Materials, v. 258, p. 120309. DOI: 10.1016/j.conbuildmat.2020.120309. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120309

Seitllari, A. and M.E. Kutay (2023a) Effect of sample geometry and air voids on the 3-Point Bend Cylinder (3PBC) fatigue test for asphalt concrete. Road Materials and Pavement Design, v. 24, n. 7, p. 1853-1868. DOI: 10.1080/14680629.2022.2107947. DOI: https://doi.org/10.1080/14680629.2022.2107947

Seitllari, A. and M.E. Kutay (2023b) Investigation of the fatigue life relationship among different geometry combinations of the 3-point bending cylinder (3PBC) fatigue test for asphalt concrete. The International Journal of Pavement Engineering, v. 24, n. 1, p. 2159402. DOI: 10.1080/10298436.2022.2159402. DOI: https://doi.org/10.1080/10298436.2022.2159402

Shan, L.; H. Yang; F. Guo et al. (2022) Fatigue damage evolution in asphalt mixture based on X-ray CT images. Construction & Building Materials, v. 358, p. 129242. DOI: 10.1016/j.conbuildmat.2022.129242. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129242

Silva (2022) Estratégias de Dosagem para Melhoria das Características de Deformação Permanente de Misturas Asfálticas Densas. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil - Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás. Goiânia.

Silva, L.S.V.D.; J.B.D.S. Bastos; J.L.O. Lucas Júnior et al. (2024) Evaluation of moisture‐induced damage on the fatigue life of asphalt mixtures using failure tests of asphalt binders, interfaces, and mixtures. Fatigue & Fracture of Engineering Materials & Structures, v. 47, n. 7, p. 2481-2496. DOI: 10.1111/ffe.14280. DOI: https://doi.org/10.1111/ffe.14280

Su, Y. and H. Nikraz (2022) New analytical-modelling method to interpret flexural bending fatigue response of asphalt mixture using the S-VECD theory. The International Journal of Pavement Engineering, v. 23, n. 8, p. 2829-2845. DOI: 10.1080/10298436.2021.1873328. DOI: https://doi.org/10.1080/10298436.2021.1873328

Teixeira, J.E.S.L.; C.M. Amaecing Junior; L.R. Rezende et al. (2023) Evaluation of asphalt concrete’s fatigue behavior using cyclic semi-circular bending test. Construction & Building Materials, v. 400, p. 132772. DOI: 10.1016/j.conbuildmat.2023.132772. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132772

Valdés-Vidal, G.; A. Calabi-Floody; E. Sanchez-Alonso et al. (2020) Highway trial sections: Performance evaluation of warm mix asphalt and recycled warm mix asphalt. Construction & Building Materials, v. 262, p. 120069. DOI: 10.1016/j.conbuildmat.2020.120069. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120069

Wang, F.; Y. Xiao; P. Cui et al. (2020) Effect of aggregate morphologies and compaction methods on the skeleton structures in asphalt mixtures. Construction & Building Materials, v. 263, p. 120220. DOI: 10.1016/j.conbuildmat.2020.120220. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120220

Wei, H.; Y. Liu; J. Li et al. (2023) Characterizing fatigue damage evolution in asphalt mixtures using acoustic emission and Gaussian mixture model analysis. Construction & Building Materials, v. 409, p. 133973. DOI: 10.1016/j.conbuildmat.2023.133973. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133973

Williams, F.N.; S. Mangiafico and C. Sauzeat (2024) Experimental evaluation of fatigue and recovery properties of a bituminous mixture during cyclic loading and rest tests. Road Materials and Pavement Design, v. 25, p. 137-152. DOI: 10.1080/14680629.2023.2191740. DOI: https://doi.org/10.1080/14680629.2023.2191740

Wohlin, C.; P. Runeson; M. Höst et al. (eds.) (2012) Experimentation in Software Engineering. Dordrecht: Springer. DOI: 10.1007/978-3-642-29044-2 DOI: https://doi.org/10.1007/978-3-642-29044-2

Xia, C.; S. Lv; M.B. Cabrera et al. (2021) Unified characterizing fatigue performance of rubberized asphalt mixtures subjected to different loading modes. Journal of Cleaner Production, v. 279, p. 123740. DOI: 10.1016/j.jclepro.2020.123740. DOI: https://doi.org/10.1016/j.jclepro.2020.123740

Xu, J.; X. Luo; X. Qiu et al. (2022) Wavelet and fractal analysis of acoustic emission characteristic of fatigue damage of asphalt mixtures. Construction & Building Materials, v. 349, p. 128643. DOI: 10.1016/j.conbuildmat.2022.128643. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128643

Yang, H.; L. Shan; L. Li et al. (2023) Mechanical and internal structural damage evolution in cold recycled mixture under fatigue loading. Journal of Cleaner Production, v. 423, p. 138776. DOI: 10.1016/j.jclepro.2023.138776. DOI: https://doi.org/10.1016/j.jclepro.2023.138776

Yao, L.; Z. Leng; J. Jiang et al. (2023) Effects of traffic load amplitude sequence on the cracking performance of asphalt pavement with a semi-rigid base. The International Journal of Pavement Engineering, v. 24, n. 1, p. 2152027. DOI: 10.1080/10298436.2022.2152027. DOI: https://doi.org/10.1080/10298436.2022.2152027

Ye, Y.; G. Li; C. Zhuang et al. (2023) Study on fatigue damage evolution and model prediction of asphalt pavement in the end-stage of service. Case Studies in Construction Materials, v. 19, p. e02377. DOI: 10.1016/j.cscm.2023.e02377. DOI: https://doi.org/10.1016/j.cscm.2023.e02377

Zhang, H.; P. Gao; Y. Pan et al. (2020a) Development of cold-mix high-toughness resin and experimental research into its performance in a steel deck pavement. Construction & Building Materials, v. 235, p. 117427. DOI: 10.1016/j.conbuildmat.2019.117427. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117427

Zhang, J.; H. Li; P. Liu et al. (2020b) Experimental exploration of influence of recycled polymer components on rutting resistance and fatigue behavior of asphalt mixtures. Journal of Materials in Civil Engineering, v. 32, n. 6, p. 04020129. DOI: 10.1061/(ASCE)MT.1943-5533.0003140. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003140

Zhang, H.; B. Sun; Y. Li et al. (2022) Adhesive property and road performance evaluation of asphalt overlay pavement with geotextile interlayer. Advances in Materials Science and Engineering, v. 2022, p. 3084668. DOI: 10.1155/2022/3084668. DOI: https://doi.org/10.1155/2022/3084668

Zhang, Y.; J. Zhang; T. Ma et al. (2023) Predicting asphalt mixture fatigue life via four-point bending tests based on viscoelastic continuum damage mechanics. Case Studies in Construction Materials, v. 19, p. e02671. DOI: 10.1016/j.cscm.2023.e02671. DOI: https://doi.org/10.1016/j.cscm.2023.e02671

Zheng, Y.; S. Chen; W. Huang et al. (2023) Principle analysis of the mix design and performance evaluation of the asphalt-filler volume equivalent substitution method. Construction & Building Materials, v. 367, p. 130276. DOI: 10.1016/j.conbuildmat.2022.130276. DOI: https://doi.org/10.1016/j.conbuildmat.2022.130276

Zhang, S.; H. Zhang and M. Zhou (2024b) Investigation on the high-temperature stability and fatigue behavior of cold mixed epoxy asphalt mixture with different gradations. Case Studies in Construction Materials, v. 20, p. e02694. DOI: 10.1016/j.cscm.2023.e02694. DOI: https://doi.org/10.1016/j.cscm.2023.e02694

Zhang, F.; X. Li; L. Wang et al. (2024a) Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and a fatigue-freeze-thaw damage evolution model. Construction & Building Materials, v. 449, p. 138427. DOI: 10.1016/j.conbuildmat.2024.138427. DOI: https://doi.org/10.1016/j.conbuildmat.2024.138427

Zhou, X.; W. Song and H. Wu (2023) Investigation on fracture performance of hot-mix asphalt with reclaimed asphalt pavement under fatigue loading. Coatings, v. 13, n. 8, p. 1318. DOI: 10.3390/coatings13081318. DOI: https://doi.org/10.3390/coatings13081318

Zhu, C.; H. Luo; W. Tian et al. (2022) Investigation on fatigue performance of diatomite/basalt fiber composite modified asphalt mixture. Polymers, v. 14, n. 3, p. 414. DOI: 10.3390/polym14030414. PMid:35160405. DOI: https://doi.org/10.3390/polym14030414

Zhu, X.; F. Ye; Y. Cai et al. (2020) Digital image correlation-based investigation of self-healing properties of ferrite-filled open-graded friction course asphalt mixture. Construction & Building Materials, v. 234, p. 117378. DOI: 10.1016/j.conbuildmat.2019.117378. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117378

Ziari, H.; M. Orouei; H. Divandari et al. (2021) Mechanical characterization of warm mix asphalt mixtures made with RAP and Para-fiber additive. Construction & Building Materials, v. 279, p. 122456. DOI: 10.1016/j.conbuildmat.2021.122456. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122456

Downloads

Publicado

03-10-2025

Como Citar

Peres de Melo, K., Emi Sudo Lutif Teixeira, J., & Ribeiro de Rezende, L. (2025). Ensaio semicircular bending dinâmico para avaliação da fadiga em misturas asfálticas. Transportes, 33, e3101. https://doi.org/10.58922/transportes.v33.e3101

Edição

Seção

Vencedores do Prêmio ANPET de Produção Científica