Dynamic semicircular bending testing for asphalt mixture fatigue evaluation
DOI:
https://doi.org/10.58922/transportes.v33.e3101Keywords:
Laboratory tests, IDT, SCB, Systematic Mapping, Statistical Analysis, MeDiNaAbstract
Determining the fatigue life of asphalt mixtures is an important step in predicting the performance of flexible surface courses, and it is necessary to use laboratory tests that adequately represent the mechanisms that lead to the failure of mixtures due to fatigue. Currently, methods such as Indirect Tensile Test (IDT), Four-Point Beam Bending (4PB) and Direct Tension (DT) are used for this purpose. Due to their practicality and speed, static fracture tests such as Semi-Circular Bending (SCB) are also widely used, but they do not allow fatigue life to be determined. This study aims to investigate the viability of the dynamic SCB test as an alternative for obtaining fatigue life coefficients in order to optimize the analyses required for the mechanistic-empirical design of sidewalks. Initially, two systematic mappings were carried out to support the methodological decisions. Static and dynamic SCB tests and IDT fatigue tests were then carried out on two asphalt mixtures. The results were statistically compared to assess the agreement between the methods and indicated that, although there were differences in the fatigue curve coefficients obtained by the dynamic SCB and IDT tests, this was not statistically significant and both had similar fatigue performance ratings.
Downloads
References
AASHTO (2018) TP 107: Determining the Damage Characteristic Curve of Asphalt Mixtures from Direct Tension Cyclic Fatigue Tests. Washington: AASHTO.
AASHTO (2017) T 321: Determining the Fatigue Life of Compacted Asphalt Mixtures Subjected to Repeated Flexural Bending. Washington: AASHTO.
AASHTO (2016) TP 124: Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using Semicircular Bend Geometry (SCB) at Intermediate Temperature. Washington: AASHTO.
AASHTO (2013) TP 105: Standard Method of Test for Determining the Fracture Energy of Asphalt Mixtures Using the Semi-Circular Bend Geometry (SCB). Washington: AASHTO.
Abhijith, B.S.; A. Raj; R. Varma et al. (2023) Influence of glass fibre grid and its placement on the fatigue damage of asphalt mixture. Materials and Structures, v. 56, n. 7, p. 140. DOI: 10.1617/s11527-023-02221-w. DOI: https://doi.org/10.1617/s11527-023-02221-w
Adnan, A.M.; C. Lü; X. Luo et al. (2024) Fatigue performance of graphene oxide modified asphalt mixture: experimental investigation and response surface methodology. Petroleum Science and Technology, v. 42, n. 18, p. 2340-2357. DOI: 10.1080/10916466.2023.2175854. DOI: https://doi.org/10.1080/10916466.2023.2175854
Ahmed, T.M.; T.Y. Ahmed and A. Al-Hdabi (2020) Evaluating fatigue performance of hot-mix asphalt using degradation parameters. Proceedings of the Institution of Civil Engineers - Construction Materials, v. 173, n. 3, p. 111-122. DOI: 10.1680/jcoma.17.00066. DOI: https://doi.org/10.1680/jcoma.17.00066
Alamnie, M.M.; E. Taddesse and I. Hoff (2023) A study on permanent deformation and fatigue damage interaction in asphalt concrete. Construction & Building Materials, v. 407, p. 133473. DOI: 10.1016/j.conbuildmat.2023.133473. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133473
Alikhani, H. and M. Latifi (2022) Evaluation of the effect of Waste steel Shaving, damage severity and strain level on the healing behavior of asphalt mixtures at different damaging-healing cycles. Construction & Building Materials, v. 347, p. 128514. DOI: 10.1016/j.conbuildmat.2022.128514. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128514
Aragão, F.T.S.; D.A. Hartmann; Y.-R. Kim et al. (2014) Numerical–Experimental Approach to Characterize Fracture Properties of Asphalt Mixtures at Low Temperatures. Transportation Research Record: Journal of the Transportation Research Board, v. 2447, n. 1, p. 42-50. DOI: 10.3141/2447-05. DOI: https://doi.org/10.3141/2447-05
Bai, T.; Y. Liang; C. Li et al. (2022) Application and validation of fly ash based geopolymer mortar as grouting material in porous asphalt concrete. Construction & Building Materials, v. 332, p. 127154. DOI: 10.1016/j.conbuildmat.2022.127154. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127154
Bai, W. (2024) Basic characterization of three kinds of bio-asphalt and research on the low-temperature performance of bio-asphalt mixtures. Case Studies in Construction Materials, v. 20, p. e03353. DOI: 10.1016/j.cscm.2024.e03353. DOI: https://doi.org/10.1016/j.cscm.2024.e03353
Barghabany, P.; W. Cao; L.N. Mohammad et al. (2020) Relationships among chemistry, rheology, and fracture/fatigue performance of recovered asphalt binders and asphalt mixtures containing reclaimed asphalt pavement. Transportation Research Record: Journal of the Transportation Research Board, v. 2674, n. 10, p. 927-938. DOI: 10.1177/0361198120938779. DOI: https://doi.org/10.1177/0361198120938779
Benaboud, S.; M. Takarli; B. Pouteau et al. (2021) Fatigue process analysis of aged asphalt concrete from two-point bending test using acoustic emission and curve fitting techniques. Construction & Building Materials, v. 301, p. 124109. DOI: 10.1016/j.conbuildmat.2021.124109. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124109
Beyene, M.; M. Elwardany; J. Youtcheff et al. (2024) Proposed automated contrast-enhanced microscopical method for evaluating air void structure in compacted asphalt concrete mixtures. Construction & Building Materials, v. 419, p. 135532. DOI: 10.1016/j.conbuildmat.2024.135532. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135532
Bueno, L.D.; S.L. Schuster; L.P. Specht et al. (2022) Asphalt pavement design optimisation: a case study using viscoelastic continuum damage theory. The International Journal of Pavement Engineering, v. 23, n. 4, p. 1070-1082. DOI: 10.1080/10298436.2020.1788030. DOI: https://doi.org/10.1080/10298436.2020.1788030
Cavalcante, D.R. (2022) Influência da Variação de Umidade e da Frequência de Ensaio no Módulo de Resiliência e na Deformação Permanente de Solos. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil - Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás. Goiânia.
CEN (2010) Bituminous Mixtures – Test Methods for Hot Mix Asphalt Part 44: Crack Propagation by Semi-Circular Bending Test. Brussels: CEN.
Chen, X. (2019) Use of Semi-Circular Bend Test to Characterize Fracture Properties of Asphalt Concrete with Virgin and Recycled Materials. Dissertation (doctorate). Pennsylvania State University College of Engineering, Pennsylvania State University. Philadelphia. Available at: <https://etda.libraries.psu.edu/catalog/16829xxc137> (accessed 02/10/2025).
Covilla-Varela, E.; E. Turbay; R. Polo-Mendoza et al. (2023) Recycled Concrete Aggregates (RCA)-based asphalt mixtures: a performance-related evaluation with sustainability-criteria verification. Construction & Building Materials, v. 403, p. 133203. DOI: 10.1016/j.conbuildmat.2023.133203. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133203
CRAN (2024) The Comprehensive R Archive Network. Available at: <https://cran.rstudio.com/> (accessed 02/10/2025).
Cruz, G.K.A.; O.M. Melo Neto; S.M. Arruda et al. (2022) Influence of particle size selection methods on asphalt mixtures produced with lateritic aggregates. Construction & Building Materials, v. 314, p. 125201. DOI: 10.1016/j.conbuildmat.2021.125201. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125201
Curado, T.S. (2024) Avaliação das Características Microestruturais e Reológicas de Amostras de Argamassa Areia Asfalto (AAA). Tese (doutorado). Programa de Pós-Graduação em Engenharia Civil - Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás. Goiânia.
DNIT (2020) Manual de Utilização do programa MeDiNa. Brasília: DNIT.
DNIT (2018a) ME 183: Pavimentos Flexíveis - Ensaio de Fadiga por Compressão Diametral à Tensão Controlada – Método de Ensaio. Brasília: DNIT.
DNIT (2018b) ME 135: Pavimentação asfáltica – Misturas asfálticas – Determinação do módulo de resiliência - Método de ensaio. Brasília: DNIT.
Dong, S.; D. Wang; P. Hao et al. (2021) Quantitative assessment and mechanism analysis of modification approaches for cold recycled mixtures with asphalt emulsion. Journal of Cleaner Production, v. 323, p. 129163. DOI: 10.1016/j.jclepro.2021.129163. DOI: https://doi.org/10.1016/j.jclepro.2021.129163
Dyer, P.P.O.L.; G.J.L. Coppio; S.A. Silva et al. (2021) Mechanical and microstructural assessments of waste foundry sand in hot mix asphalt. Construction & Building Materials, v. 311, p. 125329. DOI: 10.1016/j.conbuildmat.2021.125329. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125329
Elwardany, M.; V. Veginati; A. Andriescu et al. (2024) Understanding the sensitivity of mixture cracking performance tests to binder properties and long-term aging. Transportation Research Record: Journal of the Transportation Research Board, v. 2678, n. 1, p. 335-49. DOI: 10.1177/03611981231170629. DOI: https://doi.org/10.1177/03611981231170629
Falchetto, A.C.; K.H. Moon; D. Wang et al. (2018) Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations. Road Materials and Pavement Design, v. 19, n. 3, p. 591-604. DOI: 10.1080/14680629.2018.1418722. DOI: https://doi.org/10.1080/14680629.2018.1418722
Feng, M.; Y., Zhibin; F., Zhen et al. (2021) Design and road performance of basalt fiber asphalt mixture based on response surface methodology. Journal of Functional Materials, v. 52, n. 12, p. 12137-12142. DOI: 10.3969/j.issn.1001-9731.2021.12.022.
Freire, R.A.; V.T.F. Castelo Branco and K.L. Vasconcelos (2014) Avaliação da resistência ao trincamento de misturas asfálticas compostas por agregados miúdos com diferentes tamanhos máximos nominais. Transportes, v. 22, n. 3, p. 117. DOI: 10.14295/transportes.v22i3.791. DOI: https://doi.org/10.14295/transportes.v22i3.791
Freitas, J.B.; L.R. Rezende and G.F.N. Gitirana Jr (2020) Prediction of the resilient modulus of two tropical subgrade soils considering unsaturated conditions. Engineering Geology, v. 270, p. 105580. DOI: 10.1016/j.enggeo.2020.105580. DOI: https://doi.org/10.1016/j.enggeo.2020.105580
Fritzen, M.A.; F.A.C.P. Franco; L.A. Nascimento et al. (2019) Classificação de misturas asfálticas quanto ao desempenho à fadiga. In Anais do 9° Congresso Rodoviário Português (Lisboa, Portugal). Lisboa: Laboratório Nacional de Engenharia Civil.
Gao, L.; F. Ni; C. Ling et al. (2016) Evaluation of fatigue behavior in cold recycled mixture using digital image correlation method. Construction & Building Materials, v. 102, p. 393-402. DOI: 10.1016/j.conbuildmat.2015.11.014. DOI: https://doi.org/10.1016/j.conbuildmat.2015.11.014
Godoi, L.C. (2017) Aplicação do Ensaio de Flexão em Amostra Semicircular para Avaliação de Trincamento de Misturas Asfálticas. Dissertação (mestrado). Universidade Federal do Rio Grande do Sul. Porto Alegre.
Guabiroba, J.V.O.C.; L.R.D. Rezende; L.X. Barroso et al. (2023) Fatigue and rutting study of asphalt mixtures produced in Goiás. Matéria, v. 28, p. e13232. DOI: 10.1590/s1517-707620230001.1332. DOI: https://doi.org/10.1590/s1517-707620230001.1332
Hu, G.; Q. Yang; X. Qiu et al. (2022) Use of DIC and AE for investigating fracture behaviors of cold recycled asphalt emulsion mixtures with 100% RAP. Construction & Building Materials, v. 344, p. 128278. DOI: 10.1016/j.conbuildmat.2022.128278. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128278
Jeong, J.; B. Shane Underwood and Y. Richard Kim (2022) Cracking performance predictions using index-volumetrics relationships with direct tension cyclic fatigue test and Illinois Flexibility Index Test (I-FIT). Construction & Building Materials, v. 315, p. 125631. DOI: 10.1016/j.conbuildmat.2021.125631. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125631
Jia, H.; H. Chen; Y. Sheng et al. (2022) Effect of laboratory aging on the stiffness and fatigue cracking of asphalt mixture containing bamboo fiber. Journal of Cleaner Production, v. 333, p. 130120. DOI: 10.1016/j.jclepro.2021.130120. DOI: https://doi.org/10.1016/j.jclepro.2021.130120
Kabir, S.F.; A. Ali; C. Purdy et al. (2023) Thermal cracking in cold regions’ asphalt mixtures prepared using high polymer modified binders and softening agents. The International Journal of Pavement Engineering, v. 24, n. 2, p. 2147523. DOI: 10.1080/10298436.2022.2147523. DOI: https://doi.org/10.1080/10298436.2022.2147523
Keshavarzi, B. and Y.R. Kim (2020) A dissipated pseudo strain energy-based failure criterion for thermal cracking and its verification using thermal stress restrained specimen tests. Construction & Building Materials, v. 233, p. 117199. DOI: 10.1016/j.conbuildmat.2019.117199. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117199
Kuchiishi, A.K.; K.C. Lee and B.S. Underwood (2023) Simplified protocol for fatigue cracking characterization of asphalt mixtures using the direct tension cyclic fatigue test. Construction & Building Materials, v. 363, p. 129828. DOI: 10.1016/j.conbuildmat.2022.129828. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129828
Li, C.; H. Cheng; L. Sun et al. (2024) Development of a new circular-plate bending fatigue test to measure fatigue behaviours of asphalt mixture. Construction & Building Materials, v. 450, p. 138651. DOI: 10.1016/j.conbuildmat.2024.138651. DOI: https://doi.org/10.1016/j.conbuildmat.2024.138651
Li, X.-J. and M.O. Marasteanu (2010) Using semi circular bending test to evaluate low temperature fracture resistance for asphalt concrete. Experimental Mechanics, v. 50, n. 7, p. 867-76. DOI: 10.1007/s11340-009-9303-0. DOI: https://doi.org/10.1007/s11340-009-9303-0
Liang, R.; W. Yu and Z. Luo (2022) Laboratory investigation on pavement performance of basalt fiber-reinforced asphalt mixture under the coupling effect of freeze-thaw cycles and aging. Frontiers in Materials, v. 9, p. 930056. DOI: 10.3389/fmats.2022.930056. DOI: https://doi.org/10.3389/fmats.2022.930056
Lima, L.B.F.D.; J.P.S. Silva and L.R.D. Rezende (2023) Investigation of resilient modulus and permanent deformation of tropical soil with Reclaimed Asphalt Pavement. Transportation Geotechnics, v. 43, p. 101103. DOI: 10.1016/j.trgeo.2023.101103. DOI: https://doi.org/10.1016/j.trgeo.2023.101103
Liu, H.; A. Kuang; Z. Wang et al. (2023) Investigation on fracture and fatigue performance of cold recycling emulsified asphalt mixture based on acoustic emission parameters. Journal of Cleaner Production, v. 428, p. 139285. DOI: 10.1016/j.jclepro.2023.139285. DOI: https://doi.org/10.1016/j.jclepro.2023.139285
Liu, W.; S. Wang and X. Gu (2020) Improving microwave heating efficiency of asphalt concrete by increasing surface magnetic loss of aggregates. Road Materials and Pavement Design, v. 21, n. 4, p. 950-964. DOI: 10.1080/14680629.2018.1531778. DOI: https://doi.org/10.1080/14680629.2018.1531778
Lopes, L.N.; M.M. Farias and L.G.R. Mello (2021) Fatigue tests and damage analyses in modified binders and gap-graded asphalt mixtures with Reacted and Activated Rubber – RAR. Road Materials and Pavement Design, v. 22, n. 7, p. 1616-1636. DOI: 10.1080/14680629.2019.1710553. DOI: https://doi.org/10.1080/14680629.2019.1710553
Medina, J. and L.M.G. Motta (2015) Mecânica dos Pavimentos (3rd ed.). Rio de Janeiro: Editora Interciência.
Miranda, P.P.; T.S. Curado and L.R.D. Rezende (2024) Laboratory and statistical evaluation of the microstructural characteristics of Sand Asphalt Mortar. Transportes, v. 32, n. 3, p. e3014. DOI: 10.58922/transportes.v32i3.3014. DOI: https://doi.org/10.58922/transportes.v32i3.3014
Mora Valverde, M.K.; J.P. Aguiar Moya; M. Jiménez Acuña et al. (2021) Analysis of the variability associated with fatigue tests in asphalt mixes. Infraestructura Vial, v. 23, p. 20-30. DOI: 10.15517/iv.v23i41.44420. DOI: https://doi.org/10.15517/iv.v23i41.44420
Nguyen, M.L.; P. Hornych; X.Q. Le et al. (2021) Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid. Road Materials and Pavement Design, v. 22, p. S672-S689. DOI: 10.1080/14680629.2021.1906304. DOI: https://doi.org/10.1080/14680629.2021.1906304
Oliveira, J.A.; J.B. Soares; L.F.A.L. Babadopulos et al. (2023) Fundamentos de mecânica do dano e de viscoelasticidade para prever desempenho de misturas asfálticas quanto à fadiga. Transportes, v. 31, n. 3, p. e2745. DOI: 10.58922/transportes.v31i3.2745. DOI: https://doi.org/10.58922/transportes.v31i3.2745
Oliveira, M.S.; M.M.D. Farias and J.P.S. Silva (2022) Fatigue analysis of hot recycled asphalt mixtures with RAP incorporation. Case Studies in Construction Materials, v. 16, p. e01132. DOI: 10.1016/j.cscm.2022.e01132. DOI: https://doi.org/10.1016/j.cscm.2022.e01132
Orešković, M.; Š. Bohuš; A. Virgili et al. (2024) Simplified methodology for fatigue analysis of reinforced asphalt systems. Materials and Structures, v. 57, n. 2, p. 34. DOI: 10.1617/s11527-024-02305-1. DOI: https://doi.org/10.1617/s11527-024-02305-1
Ozer, H.; I.L. Al-Qadi; P. Singhvi et al. (2018) Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests. The International Journal of Pavement Engineering, v. 19, n. 3, p. 264-678. DOI: 10.1080/10298436.2017.1347435. DOI: https://doi.org/10.1080/10298436.2017.1347435
Parsif.al (2021) Perform Systematic Literature Reviews. Available at: <https://parsif.al/> (accessed 02/10/2025).
Radeef, H.R.; N. Abdul Hassan; M.Z.H. Mahmud et al. (2021) Characterisation of cracking resistance in modified hot mix asphalt under repeated loading using digital image analysis. Theoretical and Applied Fracture Mechanics, v. 116, p. 103130. DOI: 10.1016/j.tafmec.2021.103130. DOI: https://doi.org/10.1016/j.tafmec.2021.103130
Radeef, H.R.; N.A. Hassan; M.Z.H. Mahmud et al. (2022) Linear viscoelastic response of semi-circular asphalt sample based on digital image correlation and XFEM. Measurement, v. 192, p. 110866. DOI: 10.1016/j.measurement.2022.110866. DOI: https://doi.org/10.1016/j.measurement.2022.110866
Ragni, D.; M. Takarli; C. Petit et al. (2020) Use of acoustic techniques to analyse interlayer shear-torque fatigue test in asphalt mixtures. International Journal of Fatigue, v. 131, p. 105356. DOI: 10.1016/j.ijfatigue.2019.105356. DOI: https://doi.org/10.1016/j.ijfatigue.2019.105356
Ren, D.; H. Yang; J. Xu et al. (2024) Investigation on fatigue damage of buton rock asphalt mixtures using semi-circular bending (SCB) and digital image correlation (DIC) techniques. Construction & Building Materials, v. 451, p. 138797. DOI: 10.1016/j.conbuildmat.2024.138797. DOI: https://doi.org/10.1016/j.conbuildmat.2024.138797
Saha, G. and K.P. Biligiri (2016) Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Construction & Building Materials, v. 105, p. 103-112. DOI: 10.1016/j.conbuildmat.2015.12.046. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.046
Saleh, N.F.; B. Keshavarzi; F. Yousefi Rad et al. (2020) Effects of aging on asphalt mixture and pavement performance. Construction & Building Materials, v. 258, p. 120309. DOI: 10.1016/j.conbuildmat.2020.120309. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120309
Seitllari, A. and M.E. Kutay (2023a) Effect of sample geometry and air voids on the 3-Point Bend Cylinder (3PBC) fatigue test for asphalt concrete. Road Materials and Pavement Design, v. 24, n. 7, p. 1853-1868. DOI: 10.1080/14680629.2022.2107947. DOI: https://doi.org/10.1080/14680629.2022.2107947
Seitllari, A. and M.E. Kutay (2023b) Investigation of the fatigue life relationship among different geometry combinations of the 3-point bending cylinder (3PBC) fatigue test for asphalt concrete. The International Journal of Pavement Engineering, v. 24, n. 1, p. 2159402. DOI: 10.1080/10298436.2022.2159402. DOI: https://doi.org/10.1080/10298436.2022.2159402
Shan, L.; H. Yang; F. Guo et al. (2022) Fatigue damage evolution in asphalt mixture based on X-ray CT images. Construction & Building Materials, v. 358, p. 129242. DOI: 10.1016/j.conbuildmat.2022.129242. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129242
Silva (2022) Estratégias de Dosagem para Melhoria das Características de Deformação Permanente de Misturas Asfálticas Densas. Dissertação (mestrado). Programa de Pós-Graduação em Engenharia Civil - Geotecnia, Estruturas e Construção Civil, Universidade Federal de Goiás. Goiânia.
Silva, L.S.V.D.; J.B.D.S. Bastos; J.L.O. Lucas Júnior et al. (2024) Evaluation of moisture‐induced damage on the fatigue life of asphalt mixtures using failure tests of asphalt binders, interfaces, and mixtures. Fatigue & Fracture of Engineering Materials & Structures, v. 47, n. 7, p. 2481-2496. DOI: 10.1111/ffe.14280. DOI: https://doi.org/10.1111/ffe.14280
Su, Y. and H. Nikraz (2022) New analytical-modelling method to interpret flexural bending fatigue response of asphalt mixture using the S-VECD theory. The International Journal of Pavement Engineering, v. 23, n. 8, p. 2829-2845. DOI: 10.1080/10298436.2021.1873328. DOI: https://doi.org/10.1080/10298436.2021.1873328
Teixeira, J.E.S.L.; C.M. Amaecing Junior; L.R. Rezende et al. (2023) Evaluation of asphalt concrete’s fatigue behavior using cyclic semi-circular bending test. Construction & Building Materials, v. 400, p. 132772. DOI: 10.1016/j.conbuildmat.2023.132772. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132772
Valdés-Vidal, G.; A. Calabi-Floody; E. Sanchez-Alonso et al. (2020) Highway trial sections: Performance evaluation of warm mix asphalt and recycled warm mix asphalt. Construction & Building Materials, v. 262, p. 120069. DOI: 10.1016/j.conbuildmat.2020.120069. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120069
Wang, F.; Y. Xiao; P. Cui et al. (2020) Effect of aggregate morphologies and compaction methods on the skeleton structures in asphalt mixtures. Construction & Building Materials, v. 263, p. 120220. DOI: 10.1016/j.conbuildmat.2020.120220. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120220
Wei, H.; Y. Liu; J. Li et al. (2023) Characterizing fatigue damage evolution in asphalt mixtures using acoustic emission and Gaussian mixture model analysis. Construction & Building Materials, v. 409, p. 133973. DOI: 10.1016/j.conbuildmat.2023.133973. DOI: https://doi.org/10.1016/j.conbuildmat.2023.133973
Williams, F.N.; S. Mangiafico and C. Sauzeat (2024) Experimental evaluation of fatigue and recovery properties of a bituminous mixture during cyclic loading and rest tests. Road Materials and Pavement Design, v. 25, p. 137-152. DOI: 10.1080/14680629.2023.2191740. DOI: https://doi.org/10.1080/14680629.2023.2191740
Wohlin, C.; P. Runeson; M. Höst et al. (eds.) (2012) Experimentation in Software Engineering. Dordrecht: Springer. DOI: 10.1007/978-3-642-29044-2 DOI: https://doi.org/10.1007/978-3-642-29044-2
Xia, C.; S. Lv; M.B. Cabrera et al. (2021) Unified characterizing fatigue performance of rubberized asphalt mixtures subjected to different loading modes. Journal of Cleaner Production, v. 279, p. 123740. DOI: 10.1016/j.jclepro.2020.123740. DOI: https://doi.org/10.1016/j.jclepro.2020.123740
Xu, J.; X. Luo; X. Qiu et al. (2022) Wavelet and fractal analysis of acoustic emission characteristic of fatigue damage of asphalt mixtures. Construction & Building Materials, v. 349, p. 128643. DOI: 10.1016/j.conbuildmat.2022.128643. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128643
Yang, H.; L. Shan; L. Li et al. (2023) Mechanical and internal structural damage evolution in cold recycled mixture under fatigue loading. Journal of Cleaner Production, v. 423, p. 138776. DOI: 10.1016/j.jclepro.2023.138776. DOI: https://doi.org/10.1016/j.jclepro.2023.138776
Yao, L.; Z. Leng; J. Jiang et al. (2023) Effects of traffic load amplitude sequence on the cracking performance of asphalt pavement with a semi-rigid base. The International Journal of Pavement Engineering, v. 24, n. 1, p. 2152027. DOI: 10.1080/10298436.2022.2152027. DOI: https://doi.org/10.1080/10298436.2022.2152027
Ye, Y.; G. Li; C. Zhuang et al. (2023) Study on fatigue damage evolution and model prediction of asphalt pavement in the end-stage of service. Case Studies in Construction Materials, v. 19, p. e02377. DOI: 10.1016/j.cscm.2023.e02377. DOI: https://doi.org/10.1016/j.cscm.2023.e02377
Zhang, H.; P. Gao; Y. Pan et al. (2020a) Development of cold-mix high-toughness resin and experimental research into its performance in a steel deck pavement. Construction & Building Materials, v. 235, p. 117427. DOI: 10.1016/j.conbuildmat.2019.117427. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117427
Zhang, J.; H. Li; P. Liu et al. (2020b) Experimental exploration of influence of recycled polymer components on rutting resistance and fatigue behavior of asphalt mixtures. Journal of Materials in Civil Engineering, v. 32, n. 6, p. 04020129. DOI: 10.1061/(ASCE)MT.1943-5533.0003140. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003140
Zhang, H.; B. Sun; Y. Li et al. (2022) Adhesive property and road performance evaluation of asphalt overlay pavement with geotextile interlayer. Advances in Materials Science and Engineering, v. 2022, p. 3084668. DOI: 10.1155/2022/3084668. DOI: https://doi.org/10.1155/2022/3084668
Zhang, Y.; J. Zhang; T. Ma et al. (2023) Predicting asphalt mixture fatigue life via four-point bending tests based on viscoelastic continuum damage mechanics. Case Studies in Construction Materials, v. 19, p. e02671. DOI: 10.1016/j.cscm.2023.e02671. DOI: https://doi.org/10.1016/j.cscm.2023.e02671
Zheng, Y.; S. Chen; W. Huang et al. (2023) Principle analysis of the mix design and performance evaluation of the asphalt-filler volume equivalent substitution method. Construction & Building Materials, v. 367, p. 130276. DOI: 10.1016/j.conbuildmat.2022.130276. DOI: https://doi.org/10.1016/j.conbuildmat.2022.130276
Zhang, S.; H. Zhang and M. Zhou (2024b) Investigation on the high-temperature stability and fatigue behavior of cold mixed epoxy asphalt mixture with different gradations. Case Studies in Construction Materials, v. 20, p. e02694. DOI: 10.1016/j.cscm.2023.e02694. DOI: https://doi.org/10.1016/j.cscm.2023.e02694
Zhang, F.; X. Li; L. Wang et al. (2024a) Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and a fatigue-freeze-thaw damage evolution model. Construction & Building Materials, v. 449, p. 138427. DOI: 10.1016/j.conbuildmat.2024.138427. DOI: https://doi.org/10.1016/j.conbuildmat.2024.138427
Zhou, X.; W. Song and H. Wu (2023) Investigation on fracture performance of hot-mix asphalt with reclaimed asphalt pavement under fatigue loading. Coatings, v. 13, n. 8, p. 1318. DOI: 10.3390/coatings13081318. DOI: https://doi.org/10.3390/coatings13081318
Zhu, C.; H. Luo; W. Tian et al. (2022) Investigation on fatigue performance of diatomite/basalt fiber composite modified asphalt mixture. Polymers, v. 14, n. 3, p. 414. DOI: 10.3390/polym14030414. PMid:35160405. DOI: https://doi.org/10.3390/polym14030414
Zhu, X.; F. Ye; Y. Cai et al. (2020) Digital image correlation-based investigation of self-healing properties of ferrite-filled open-graded friction course asphalt mixture. Construction & Building Materials, v. 234, p. 117378. DOI: 10.1016/j.conbuildmat.2019.117378. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117378
Ziari, H.; M. Orouei; H. Divandari et al. (2021) Mechanical characterization of warm mix asphalt mixtures made with RAP and Para-fiber additive. Construction & Building Materials, v. 279, p. 122456. DOI: 10.1016/j.conbuildmat.2021.122456. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122456
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Karolayne Peres de Melo, Jamilla Emi Sudo Lutif Teixeira, Lilian Ribeiro de Rezende

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- The authors retain the copyright and grant Transportes the right of first publication of the manuscript, without any financial charge, and waive any other remuneration for its publication by ANPET.
- Upon publication by Transportes, the manuscript is automatically licensed under the Creative Commons License CC BY 4.0 license. This license permits the work to be shared with proper attribution to the authors and its original publication in this journal, and to be adapted for non-commercial purposes, provided appropriate credit is given and any derivative works are distributed under the same terms.
- Authors are authorized to enter into additional separate contracts for the non-exclusive distribution of the version of the manuscript published in this journal (e.g., publishing in an institutional repository or as a book chapter), with recognition of the initial publication in this journal, provided that such a contract does not imply an endorsement of the content of the manuscript or the new medium by ANPET.
- Authors are permitted and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal websites) after the editorial process is complete. As Transportes provides open access to all published issues, authors are encouraged to use links to the DOI of their article in these cases.
- Authors guarantee that they have obtained the necessary authorization from their employers for the transfer of rights under this agreement, if these employers hold any copyright over the manuscript. Additionally, authors assume all responsibility for any copyright infringements by these employers, releasing ANPET and Transportes from any responsibility in this regard.
- Authors assume full responsibility for the content of the manuscript, including the necessary and appropriate authorizations for the disclosure of collected data and obtained results, releasing ANPET and Transportes from any responsibility in this regard.