Determining the dynamic modulus of asphalt mixtures using ultrasonic testing
DOI:
https://doi.org/10.58922/transportes.v31i3.2788Keywords:
Ultrasonic testing, P-wave propagation, Viscoelasticity, Asphalt mixture, Dynamic modulusAbstract
In the last decades, ultrasonic testing has been adapted to determine the dynamic modulus of asphalt mixtures. This technique is promising because strain levels during the test allow the characterization in the linear viscoelastic regime, in addition of being fast non-destructive tests. There may be differences between its results and those of classical tests, mainly due different data treatment, resulting from the adaptation of variables in behavior equations, as well as the complexity of the material, and of how the waves propagate within it. The present paper studies the influence of variables in the equation that describes the relationship between mechanical behavior parameters (modulus, Poisson’s ratio and phase angle) and the ultrasonic pulse velocity. Material parameters are obtained in an indirect manner. The ultrasonic test results were combined with the 2S2P1D rheological model to obtain those variables and were compared to the results from classical tests. Results show that the simplification in considering nil phase angle and a constant value of Poisson's ratio leads to errors of 8.6% for high temperatures and 3.4% for low temperatures. Despite limitations of access to only the high frequency range of master curves, the technique is promising because it allows an adequate, nondestructive and fast characterization in accordance to the characteristics of the material.
Downloads
References
AASHTO (2011) T 342: Determining Dynamic Modulus of HotMix Asphalt (HMA). Washington: AASHTO.
AASHTO (2017) R 35: Standard Practice for Superpave Volumetric Design for Asphalt Mixtures. Washington: AASHTO.
ASTM (2016) C597: Standard Test Method for Pulse Velocity Through Concrete. West Conshohocken: ASTM International.
Babadopulos, L.F.A.L.; G. Orozco; C. Sauzéat et al. (2019) Reversible phenomena and fatigue damage during cyclic loading and rest periods on bitumen. International Journal of Fatigue, v. 124, p. 303-314. DOI: 10.1016/j.ijfatigue.2019.03.008. DOI: https://doi.org/10.1016/j.ijfatigue.2019.03.008
Babadopulos, L.F.A.L.; L.G.F. Wellington; A.F. Reuber et al. (2014) Avaliação do módulo dinâmico de misturas asfálticas a partir de diferentes modos de carregamento. In Anais do 21º Encontro de Asfalto. Rio de Janeiro: IBP, p. 1-12.
Bernucci, L.B.; L.M.G.D. Motta; J.A.P. Ceratti et al. (2010) Pavimentação Asfáltica: Formação Básica para Engenheiros. Rio de Janeiro: Petrobras.
Carret, J. (2019) Linear Viscoelastic Characterization of Bituminous Mixtures from Dynamic Tests Back Analysis. Tese (doutorado). Université of Lyon, Lyon. Disponível em: <https://inria.hal.science/tel-02170515v2> (acesso em 26/07/2022).
Carret, J.C.; H. Di Benedetto e C. Sauzeat (2020) Linear viscoelastic behavior of asphalt mixes from dynamic frequency response functions. International Journal for Numerical and Analytical Methods in Geomechanics, v. 44, n. 7, p. 1019-1031. DOI: 10.1002/nag.3045. DOI: https://doi.org/10.1002/nag.3045
Cheeke, J.D.N. (2002) Fundamentals and Applications of Ultrasonic Waves. Boca Raton: CRC Press.
Di Benedetto, H.; B. Delaporte e C. Sauzéat (2007) Three-dimensional linear behaviour of bituminous materials: experiments and modelling. International Journal of Geomechanics, v. 7, n. 2, p. 149-157. DOI: 10.1061/(ASCE)1532-3641(2007)7:2(149). DOI: https://doi.org/10.1061/(ASCE)1532-3641(2007)7:2(149)
Di Benedetto, H.; C. Sauzéat e J. Sohm (2009) Stiffness of bituminous mixtures using ultrasonic wave propagation. Road Materials and Pavement Design, v. 10, n. 4, p. 789-814. DOI: 10.1080/14680629.2009.9690227. DOI: https://doi.org/10.1080/14680629.2009.9690227
DNIT (2019) Norma DNIT 416/19 – ME: Pavimentação asfáltica – Misturas asfálticas – Determinação do módulo dinâmico – Método de ensaio. Rio de Janeiro: Departamento Nacional De Infraestrutura de Transportes.
Gudmarsson, A.; N. Ryden; H. Di Benedetto et al. (2015) Complex modulus and complex Poisson’s ratio from cyclic and dynamic modal testing of asphalt concrete. Construction & Building Materials, v. 88, p. 20-31. DOI: 10.1016/j.conbuildmat.2015.04.007. DOI: https://doi.org/10.1016/j.conbuildmat.2015.04.007
Jiang, Z.; J. Ponniah; G. Cascante et al. (2011) Nondestructive ultrasonic testing methodology for condition assessment of hot mix asphalt specimens. Canadian Journal of Civil Engineering, v. 38, n. 7, p. 751-761. DOI: 10.1139/L11-046.
Larcher, N.; M. Takarli; N. Angellier et al. (2015) Towards a viscoelastic mechanical characterization of asphalt materials by ultrasonic measurements. Materials and Structures, v. 48, n. 5, p. 1377-1388. DOI: 10.1617/s11527-013-0240-0. DOI: https://doi.org/10.1617/s11527-013-0240-0
Mandel, J. (1966) Cours de Mécanique des Milieux Continus (Mécanique des Solides, vol. 2). Paris: Gauthier-Villars Editeur.
Mangiafico, S.; L.F.A.L.Babadopulos; C. Sauzéat et al. (2018) Nonlinearity of bituminous mixtures. Mechanics of Time-Dependent Materials, v. 22, n. 1, p. 29-49. DOI: 10.1007/s11043-017-9350-3. DOI: https://doi.org/10.1007/s11043-017-9350-3
Mounier, D.; H. Di Benedetto e C. Sauzéat (2012) Determination of bituminous mixtures linear properties using ultrasonic wave propagation. Construction & Building Materials, v. 36, p. 638-647. DOI: 10.1016/j.conbuildmat.2012.04.136. DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.136
Nguyen, Q.T.; H. Di Benedetto e C. Sauzéat (2015) Linear and nonlinear viscoelastic behaviour of bituminous mixtures. Materials and Structures, v. 48, n. 7, p. 2339-2351. DOI: 10.1617/s11527-014-0316-5. DOI: https://doi.org/10.1617/s11527-014-0316-5
Norambuena-Contreras, J.; D. Castro-Fresno; A. Vega-Zamanillo et al. (2010) Dynamic modulus of asphalt mixture by ultrasonic direct test. NDT & E International, v. 43, n. 7, p. 629-634. DOI: 10.1016/j.ndteint.2010.06.007. DOI: https://doi.org/10.1016/j.ndteint.2010.06.007
Oliveira, L.C. (2019) Efeito dos Períodos de Repouso no Ensaio de Fadiga em Misturas Asfálticas e em Ligantes. Dissertação (mestrado). Engenharia de Transportes, Universidade Federal do Ceará, Fortaleza, CE. Disponível em: <https://repositorio.ufc.br/handle/riufc/51476> (acesso em 26/07/2022).
Papazian, H.S. (1962) The response of linear viscoelastic materials in the frequency domain with emphasis on asphaltic concrete. In: International Conference on the Structural Design of Asphalt Pavements. Michigan: TRB, p. 454-463.
Silva, L.S.V.; J.B.S. Bastos e J.B. Soares (2022) Efeito do uso de corpos de prova moldados e extraídos na caracterização mecânica de misturas asfálticas. Transportes, v. 30, n. 1, p. 2620. DOI: 10.14295/transportes.v30i1.2620. DOI: https://doi.org/10.14295/transportes.v30i1.2620
Theisen, K.M. (2011) Estudo de Parâmetros Constitutivos Extraídos de Dados Experimentais no Comportamento de Misturas Asfálticas. Tese (doutorado). Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS. Disponível em: <https://lume.ufrgs.br/handle/10183/35622> (acesso em 26/07/2022).
Williams, M.L.; R.F. Landel e J.D. Ferry (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, v. 77, n. 14, p. 3701-3707. DOI: 10.1021/ja01619a008. DOI: https://doi.org/10.1021/ja01619a008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Keila Rodrigues Rabelo, Lucas Feitosa de Albuquerque Lima Babadopulos, Jorge Barbosa Soares

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who submit papers for publication by TRANSPORTES agree to the following terms:
- The authors retain the copyright and grant Transportes the right of first publication of the manuscript, without any financial charge, and waive any other remuneration for its publication by ANPET.
- Upon publication by Transportes, the manuscript is automatically licensed under the Creative Commons License CC BY 4.0 license. This license permits the work to be shared with proper attribution to the authors and its original publication in this journal.
- Authors are authorized to enter into additional separate contracts for the non-exclusive distribution of the version of the manuscript published in this journal (e.g., publishing in an institutional repository or as a book chapter), with recognition of the initial publication in this journal, provided that such a contract does not imply an endorsement of the content of the manuscript or the new medium by ANPET.
- Authors are permitted and encouraged to publish and distribute their work online (e.g., in institutional repositories or on their personal websites) after the editorial process is complete. As Transportes provides open access to all published issues, authors are encouraged to use links to the DOI of their article in these cases.
- Authors guarantee that they have obtained the necessary authorization from their employers for the transfer of rights under this agreement, if these employers hold any copyright over the manuscript. Additionally, authors assume all responsibility for any copyright infringements by these employers, releasing ANPET and Transportes from any responsibility in this regard.
- Authors assume full responsibility for the content of the manuscript, including the necessary and appropriate authorizations for the disclosure of collected data and obtained results, releasing ANPET and Transportes from any responsibility in this regard.